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Obituary
Baron Paul Melchior

On the 15th of September 2004, Baron Paul Melchior passed away. He was 78 years
old. Recently, he had hip replacement surgery and died painfully from complications.

Paul Melchior was an exceptional person. He contributed immensely to the
development of geophysics not only as an outstanding scientist but also as a great leader.
From 1973 to 1991, he served as Secretary General of International Union of Geodesy and
Geophysics (IUGG), and was the Honorary Secretary General of [IUGG until his death. His
tenure lasted so long because he had an extraordinary ability to meet the expectations of his
colleagues, and it was difficult to find someone who was willing to follow in his footsteps to
manage such a demanding position. One of his successes as Secretary General was the
adhesion of China as member of IUGG, for which he showed all his skill in diplomatic
matters.

During his long and fruitful scientific career, Paul Melchior had been :
Director of the International Center for Earth Tides (1958-1995),
President of the Commission of Earth Rotation of the International
Astronomical Union (1967-1970), and President of CODATA (1974-1978).

Paul Melchior studied mathematics at the Free University of Brussels. His Doctorate
in Mathematical Sciences was earned at the same University in 1951. His professional career
started as assistant at the Royal Observatory of Belgium in 1949. He became the Director in
1981 and served in that capacity until his retirement in 1990. Paul Melchior had a profound
attachment to the Observatory. His contributions to the development of geophysics and
geodesy at the Observatory are countless and brought great renown to his grateful Institute.
For his dedication for science and his international reputation, in 1993 King Baudouin
bestowed upon him the title of Baron. Paul Melchior valued this mark of honour above all.
He was very attached to his country and its monarchy.

Paul Melchior began his career as an astronomer. Between 1950-1957, he spent long

nights observing at the Askania Great Meridian Circle in Uccle. After compiling the data, he
published the most precise star catalogue of that time. Soon, he was interested in the Earth's
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rotation. He then developed the complete theory of the motions of the Earth's rotational axis
and its link to Earth's tides. This became his main subject of research. He began measuring
Earth tides in 1957 with the Verbaandert-Melchior quartz tiltmeters. In 1958, he was the first
to analyze Earth tide observations using an electronic computer, the famous IBM 650. In
1968, Paul Melchior founded, with Johnny Flick, the Underground Laboratory of
Walferdange in Luxembourg. In 1969, with Prof. Manfred Bonatz, they installed tiltmeters,
gravimeters and a satellite camera in Spitzbergen (Norway). Thanks to his growing scientific
reputation, the US Navy supported him to set up the first permanent Transit Satellite Doppler
recording station in Europe, which operated until 1993. In 1973, his skillful and accurate
interpretation of Earth tide gravity observations led the US Air Force to entrust his team to
carry out Trans World Tidal Gravity Profiles. A total of 127 stations

were observed worldwide for at least 6 months. This exceptional data set was used to assess
the precision of the oceanic tidal models derived from Topex-Poseidon a few years ago.
Always looking for more precise

observations in gravimetry, Paul Melchior succeeded in raising funds to install the first
superconducting gravimeter in Europe in Uccle.

Paul Melchior was also a Professor at the Catholic University of Louvain. His lectures
were gripping due to his tremendous experience and expertise. He directed several Ph. D.
students who considered themselves lucky to have him as an advisor. Being absorbed by his
scientific and administrative life, he chose to trust his students instead of directing their theses
on a daily basis. His door was open at any time to discuss science and he always gave advice
without imposing direction. Paul Melchior succeeded in hiring some of his students at the
Royal Observatory of Belgium, and helped and supported the others to get positions in
academic institutes. In his last years, he was deeply involved in the development of the
European Center for Geodynamics and Seismology (ECGS) in Luxembourg. Paul Melchior,
one of the founders of the ECGS, was the most active member of the scientific committee.

Although Paul Melchior was very busy, he found the time to write about 300 scientific
papers as well as two books published by Pergamon Press. The first one, published a few
decades ago, was devoted to Earth Tides. It is still the only one on the subject. He will be
remembered as "the Father of Earth tides," and was bestowed during his lifetime with
numerous international honours and distinctions. Notable among these (in addition to the title
of Baron awarded by the King of Belgium) are his election to the title of "Fellow" of the
American Geophysical Union in 1978; his nomination as honorary Professor of the Institute
of Geodesy and Geophysics of the Chinese Academy of Sciences; and his nominations as
foreign member to various scientific academies in Finland, the Netherlands, Spain, and
Romania.

Paul Melchior had an extremely rich personality. In addition to his scientific career, he
was a humanist passionate about history and literature. He also enjoyed national and
international politics, which
were favourite subjects of discussion. Anyone who had the chance to have dinner with Paul
Melchior will never forget an enjoyable time listening to his incredible stories so well told. He
is remembered for his taste
for good foods, especially Italian cooking.

As a friend, Paul Melchior was trusting and loyal. He enjoyed writing to his friends
and his correspondence could easily fill the entire library of the Royal Observatory. Being a
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stamp collector, one suspected that each time he sent a letter, he was anxious to get a nice
stamp on the returning letter.

A man of his calibre could count on a wife of exception. Madame Melchior was
literally at the service of the career of her husband. She prepared dinner for so many visiting
scientists. She also learned Russian to translate the huge Russian bibliography on Earth Tides
for her husband but also for all the readers of the Bulletin d'Informations des Marées
Terrestres.

Paul Melchior will be missed not only by his family and friends, but also by his many
colleagues, worldwide. His motto was: "In Omnibus Terris Amicus".

Prepared by V. Dehant and O. Francis
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Estimating the Fluid Core Resonance Based on Strain Observation
J. Pingl’z, T. Tsubokawa' Y. Tamural, K. Heki’, K. Matsumoto', and T. Sato’
(jsping@miz.nao.ac.jp)
1. National Astronomical Observatory, 2-12 Hoshigaoka Mizusawa Iwate, 023-0861, Japan
2. Astrogeodynamic Center, Shanghai Astronomical Observatory, Shanghai, 200030, China
3. Division of Earth and Planetary Sciences, Hokkaido University, Sapporo, 060-0810 Japan

[Abstract] Esashi Earth Tides Station has been operated for tidal observations from 1979.
Among the observations, a long term extensometer data set for 3 components of both free
end and middle point transducers are calibrated and corrected to solve the tidal drift and
tidal admittances. Based on the estimated admittances of diurnal tidal constituents, the
fluid core resonance parameters are obtained as 419.9+/-1.3 sidereal days for the
eigenperiod, and 5,900-7,440 for the quality factor. This result is precise enough to

compare with the results obtained from other independent methods.

1. Introduction

Since 1979, the Earth tides and the secular crustal motion are observed at the Esashi Earth
Tides Station of the Mizusawa Astrogeodynamics Observatory of National Astronomical
Observatory by collocating three kind instruments of the gravimeter, the quartz tube
extensometers and the water tube tiltmeters. Here after this site is referred to the Esashi
station. The data obtained from these instruments clearly indicate that the Esashi station is
very stable. For example, the average strain rate in the EW direction is to be about -3x10® per
year in the sense of the contraction as a mean rate over the past 17 years.

The data obtained at the Esashi station have an high potential to study not only the detailed
features of the Earth tides but also to study the tectonic phenomena around this area that
should be related to the plate motion. We have compiled the strain data obtained from 1980.
Based on this data set, we started the researches related to the Earth tide and the secular
crustal motion. As a report using the newly compiled data, we will introduce here the analysis
results for the fluid core resonance (FCR) due to the resonant motion of the Earth’s core
introduced by the diurnal tidal forces of the Sun and the Moon. The tidal factors of the strain
tides are represented with a pure combination of the Love and Shida number 2 and / There is a
possibility that the strain tides reflect the time variations inside the Earth’s elastic structural
parameters.

The Esashi station (141020°'7”E, 3908'53”N, +393m) is located on the north side of the Mt.
Abara, about 16 km east of the Mizusawa Astrogeodynamical Observatory of NAOJ. The
station consists of three observation tunnels and a gravity measurement room. (See Figure 1)
The 150 m long tunnel is dug into granite bedrock and offers very stable environment for

reliable measurements of the Earth tides and crustal deformation. Three quartz tube
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extensometers along north-south (NS), east-west (EW) and north-east (NE) directions,
respectively and two water tube tiltmeters have regularly been used for observation since June
1979. The observation with a borehole strainmeter started in January 1985. In addition,
atmospheric pressure, rainfall and air temperature are also measured. Log-file of the entrances
into the observational tunnel, offset of the signals, and occurrences of earthquakes, etc., is also
recorded and available in machine-readable forms. A new type of absolute gravimeter (AG) is
under construction. A cryogenic superconducting gravimeter (SG) was installed in 1988 for
detecting tiny signals from the core of the Earth. Since 2001, the observation of comparing the
AG and the SG is carried out once a year. The data observed from the extensometers, the
tiltmeters and the borehole strain meter are sampled at every 1-minute interval, then, the data

are sent to the Mizusawa campus by the telemeter system.

2. Strain data obtained by the extensometers and data preprocessing

The extensometer consists of a quartz-glass tube as the standard for measurement,
supporting frames and a transducer. One end of each tube is fixed on bedrock and the other is
kept free. The displacements of the pedestals at the free end (indexed by F) and the middle
point (indexed by M) relative to the fixed-end are measured with differential transformers with
primary exciting signal of 5 kHz and 2.5 Vp-p. (Tsubokawa & Asari, 1979). The resolution is
better than 1010 strain units for each component of the extensometers. To calibrate the
transducer and to adjust the zero point of the output signal, each transducer is mounted on
sliding stage with a differential micrometer. The routine strain observation at the free ends
was started from June 1979. The observation at the middle points began in the beginning of
1980 to check the reliability of the observed strain steps caused by earthquakes (Sato et al.,
1980)
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Figure 1. Plan figure of the observation tunnel
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Seventeen years (i.e. the period from January 25, 1980 to January 25, 1997) strain data
obtained from the 3 extensometers at both the free ends and the middle points are used in this
study. Due to the limitation of computer memory, but in order to get high time resolution for
estimating the admittance of diurnal and semi-diurnal tidal constituents, the raw 1-minute
data were decimated at the rate of every 30 minutes by using moving average method to make a
standard database for tidal analysis, although usually 1-hour data are used for the tidal
analysis. The original data include irregular parts due to the malfunction of the instrument,
the works in the observation tunnel, the power failure and so on. Commonly, the magnitude of
step like changes due to these irregular origins are carefully estimated and corrected using the
data based on the trend component that was estimated by using the tidal analysis program
‘BAYTAP-G’ (Tamura et al., 1991) without estimating the response to the atmospheric pressure
changes, in the empirical way.

In our data analysis, the input data for BAYTAP-G are 30 minutes sampling standard
database with its corresponding scale factors, the barometer data obtained at the same period
with the same sampling rate as strain data and its scale factors. The barometer data is applied
to estimate the strain response to the variation of atmospheric pressure in the tunnel. When
running BAYTAP-G, relatively short span and time lag are set at first step. The strain steps,
the strain drift and the atmospheric response are estimated together with the amplitudes and
phase lags for various tidal constituents in this procedure.

Using the data with the sampling period of 30 minutes can improve the time resolution and
precision of the final analysis results for the tidal admittances. By adjusting the step like
changes together with solving atmospheric response, it can reduce the systematical biases
between the estimated trend and original data to less than 1.5x10® strain units. If not
introducing atmospheric response here, the biases will be 1 order larger or more for the data of
last several years. The results from data pre-processing are given in Figure 2.

At east-west direction, the interseismic shortening rate has been investigated by many
researchers based on continuous GPS observation in northeast Japan. Two groups of Sheng-Tu
& Holts (1995) and Mazzotti (et al., 2000) obtained an average strain rate of about -3x108 per
year in the EW direction. Heki (2004) pointed out that even in the same area, the shortening
rate is not exactly the same by different place, and it is about 1x107 per year around Esashi
station in recent years. By linear fitting the drifts of EW free end strain component in Figure 2,
its has been obtained as +1.8x1077, -4x10'8 and -2.0x10°7 for the year periods of 1979.4-1983.1,
1983.1-1994.6, and 1994.6-1997.0, respectively. The average over the whole observation period
is estimated to be at -3x10°8 per year, which agrees with the mean strain rate from GPS data

analysis (Sheng-Tu & Holts, 1995; Mazzotti, et al., 2000).
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Figure 2, 17 years strain data obtained by Esashi extensometers, which were calibrated by introducing scale
factor time series, and were corrected for the irregular steps. 3 free end and 3 middle point components. Thick
line and thin line show the observed strain and the strain trend estimated by BAYTAP-G, respectively. Due to
the large data gaps in strain observable, BAYTAP-G cannot handle the database perfectly, and introduces
remarkable error into trend estimation. However, these errors can be simply removed or be replaced by more
reasonable interpolating data.

3. Free core resonance from calibrated strain data

The long term tidal observation will give an independent way to estimate the parameters of
fluid core resonance (FCR). Due to the slight misalignment between the rotation axes of mantle
and outer core and due to the ellipticity of the core-mantle boundary (CMB) of the Earth, the
Free Core Nutation (FCN) will be excited by the pressure torque acting through the CMB, due

to the core-mantle coupling. When we observe the FCN on the Earth’s surface, it shows a period
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close to a sidereal day, therefore, the FCN is also called the nearly diurnal free wobble (NDFW).
It is responsible of the resonant behavior of the Earth tides in the diurnal band. Precise
observation of the FCR parameters gives an opportunity to retrieve the information on CMB
related to the core-mantle coupling.

After the drifts and steps of strain components were being estimated, the steps were corrected
to the original data. Finally the tidal admittances were estimated from the corrected strain
data in one step using BAYTAP-G software. The precision of the result is improved by a factor
of 5 or better, compared with the formal errors obtained by Sato(1989) only using 3 years data.
The diurnal tidal constituents of O1, P1, K1, Psil and Phil are used to estimate the FCR
parameters in this study. As an example, the observed tidal strain admittance for the NS

middle point is given in Table 1.

Table 1. Tidal Admittance of NS Middle-Point Strain. Period: 1980.01.25.0 — 1997.01.21.0

SYMBOL FACTOR (RMS) PHASE (RMS)
o1 .27010 (.00029) 0.581° ( .062°)
P1 .25669 (.00060) 3.432° ( .134°)
K1 .18496 (.00019) 6.967° ( .060°
Psif 89915 (.02479) 13.830° (1.579°)
Phi1 40144 (.01398) 3.286° (1.995°)

Table2.1 FCR parameters estimated from observed and corrected tidal admittances

Input Data Correction PFCR(s.d.) PFCR_err 1/Q 11Q_err

Free_end none 429.387 4.66 3.139x10* 6.22x10°
Free_end local 417.318 1.31 1.053x10™ 1.35x10°°
Free_end local&ocean  421.732 1.6 9.499x10° 2.12x10°
Mid_Point none 418.273 14.4  1.725x10™ 2.86x10*
Mid_Point local 404.544 17.5  2.835x10™ 1.43x10™*
Mid_Point local&ocean  410.628 113  1.456x10™ 1.77x10°

Table2.2 FCR parameters estimated from different combinations of global tidal strain with
local and ocean corrections.

Combination Case PFCR(s.d.) PFCR_err Q Q_err

1.Free_end_only 421.732 1.6 10500 2350
2.Mid_Point_only 410.628 1.13 6870 830
3.Free_end+Mid_Point 419.867  1.31 6670 770

Two corrections were applied to the observed strain admittances. One is the local correction,
which include the following four effects: namely, the topography, the cavity, the regional and
local geologies. Another is the ocean loading correction. The transform matrices estimated by
Sato (1989) were adopted to get homogeneous strain from the observed strain, however, the
possible error of the matrices was not taken into account in this work. The ocean loading effects

were estimated based on NAO’99b ocean tide model, which had been obtained from
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Figure 3. Phasor plots of the observation and theoretical body tides of O1 and Phil constituents.
The dash line is the theoretical body tide. The solid lines 1,2,3 indicate the observed strains,
local effects and ocean loadings respectively.

11020



TOPEX/POSEIDON altimeter data (Matsumoto et al,, 2000) and Green’s function for 1066A
Earth model by using a modified GOTIC2 software (Matsumoto 2001). The strain corrected for
these effects is consistent with that corresponding to the strain due to the theoretical body tidal
strain. The corrections for O1 and Phil constituent of all 6 components are shown in Figure 3 in
the form of the phasor plot. The discrepancy is remarkably reduced between the observed tide
and the theoretical body tide by correcting for the local effects and the oceanic loading effect.
The theoretical admittances of the body tide are calculated by using the Love numbers for the
1066A Earth mode (Wahr, 1981) with a FCR period obtained from VLBI method (Defraigne, et
al., 1994&1995).

Based on the Egs. 6 & 7 in Sato (et al,1994), the admittance of O1 is used to normalize tidal
admittances for other waves. From these normalized body tidal admittances, the SALS
(Nakawaga, 1984) code with so called “Marquardt method” for nonlinear least-squares fitting is
used to estimate the complex resonance strength parameters Bs, FCR period (PFCR) and
quality factor Q. Here PFCR and Q are assumed as the common or global parameters for all
strain components adopted in the fitting. After finding a set of closest initial value for the
parameters to be solved by using a relatively complicated procedure with artificial constrains,
all of the parameters were estimated without any constraint conditions for all parameters. The
results for FCR parameters estimated from the observed tidal admittances and from corrected
tidal admittances are listed in Table 2.1.

Because the observation is obtained at the same station, local effects may introduce large
biases into the data analysis. This can be noticed by the large estimation errors for both of
PFCR and 1/Q in the table in the case of using observed admittances without any correction.
Also, due to the ocean loading effects, PFCR will be shortened, and Q will be reduced for the
global FCR parameters. These phenomena can also be seen in Table 2.1. For the final results,
corrected for local effects and ocean loading, FCR parameters are estimated from 3 kinds of
combinations of input data sets, calibrated free end data only, calibrated middle point data only,
and the combination of them. For the first two cases, the global FCR parameters are set
independently and separately. For the third case, the FCR parameters are set the same for both
free end and middle point data. The results are given in Table2.2. A shorter FCR period and a
relatively larger quality factor are obtained. Among them, result in case 3 is more reasonable
than in cases 1 & 2, because the complex resonance strength parameters Bs are usually
different for each strain component, where the global parameter FCR period PFCR and quality

factor @ are homogeneous ones, and will be the same for all strain components.

4. Discussions
Long period tidal data, i.e. strain, tilt and gravity, obtained by Esashi Earth Tide Station may
contribute to geophysical research in many directions. In this paper, we calibrated 17 years

strain data of the three horizontal components for both free end and middle point transducers of
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the extensometers, estimated the strain rate at EW direction for Esashi station, and then
estimated the FCR parameters as a first report of the research work on long period tidal
measurements at Esashi station.

FCR parameters have been obtained from different kinds of observations. Using super
conducting gravity data of GGP, Sato (2004) got a new result of 429.66+/-1.43s.d. &
9,350-10,835; from VLBI observation, Defraigne, (et al, 1994&1995) got a result of 433.9 +/-0.5
& 40,000 for PFCR and Q, respectively. Till now, all of the estimated eigenperiods are
significantly shorter than the theoretical value, i.e. 460s.d. given by Wahr (1981). It can be
explained by a departure from the hydrostatic flattening at the core-mantle boundary. Our
result is the shortest among them. This may be partly explained by the possible error in the
local transform matrices, and leave this problem as an open topic for the future work. And/or
there is a possibility that the small number of the tidal waves used in the fitting is responsible
to the obtained short FCR period. This will be checked, and the data analysis will be renewed
by introduce more diurnal tidal constituents in number into the fitting procedure. However, as
an independent average result from 17 years stable and sensitive strain data, it is precise
enough to compare with others. The shorter period of FCR may indicate a larger bias or a

departure of the figure of CMB that is expected from hydrostatic theory.
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Determination of the Periods of the Earth’s Free Oscillation Using
Superconducting Gravimeter Data

J. Y. Guo®®, H. Greiner-Mai®, O. Dierks?, L. Ballani®, J. Neumeyerb, C. K. Shum®
“The Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, School of Geodesy and Geomatics, Wuhan University,
129 Luoyu Road, 430079 Wuhan, China. Email: junyiguo@public.wh.hb.cn
I’GeoForschungsZentrum Potsdam, Section 1.3, Telegrafenberg A17, D-14473 Potsdam, Germany

¢Laboratory for Space Geodesy and Remote Sensing, The Ohio State University, 2070 Neil Avenue, Columbus, Ohio 43210-1275, USA

Abstract

A stacking method, which is referred as folding-averaging algorithm (FAA) in this paper, was frequently used for
evaluating discrete Fourier transform (DFT) before the fast Fourier transform (FFT) technique was conceived. In this
paper, we reformulate the FAA to precisely determine periods of signals which may be present in a time series. The
basic principle of the FAA is to rebuild for every test period a new short time series by cuiting the original time series
to shorter ones of which the length is equal to the test period (at the end of the time series, a small fraction shorter
than the test period may be discarded), and then stacking the short time series by averaging. In this stacking process
of averaging, the amplitude of the possible signal with a period equal to the test period remains the same, but signals
of different periods are averaged out and the random error is reduced. Amplitude and phase of the possible signal
with a period equal to the test period can then be estimated using the averaged short time series. By searching for the
maximum extremes of the amplitude by varying the test period, the periods of the signals which may be present in the
time series can be very precisely determined. The FAA is distinct from DFT as follows: in FAA, periods of possible
real physical signals in the time series are sought; but in DFT, sinusoidal functions with prescribed periods which are
submultiples of the length of the time series are used to represent the time series exactly. The usefulness of the FAA
is illustrated by applying it to determine the periods of the Earth’s free oscillations using superconducting gravimeter
(SG) data after the Peruvian Earthquake of magnitude 8.4 in 2001.

keywords: Time series; Folding-averaging algorithm; Period determination; Earth’s free oscillation; superconducting
gravimeter observation

1 Introduction

Retrieving periodical signals buried in a time series has been a topics heavily investigated in many branches of science,
notably geophysics. Undoubtedly, the most well known method used nowadays in time series analysis is the DFT, or
called FFT as a fast evaluation version. Having an inverse transform, the DFT gives exact representations of a time
series using sinusoidal functions of which the periods are submultiples of the length of the time series. But in real
physical problems, the period of a signal depends on its physical cause other than the length of observation, and hence,
is not necessarily equal to a certain submultiple of the length of the time series obtained from observation. From this
point of view, the DFT is not really relevant in determining periods of real physical signals in time series. A remedy
to this weakness is to fit the Fourier spectrum around a peak with a resonance function (Bolt and Brillinger, 1979;
Dahlen, 1982; Masters and Gilbert, 1983).

Unlike DFT, as can be seen from the process of constructing the averaged short time series stated in the abstract, the
FAA is designed for searching for periods of real physical signals in time series other than giving exact representations
of time series using prescribed periodical functions. For example, assume that a sinusoidal signal with a period of
0.985 hour is present in a time series of 100 hours. When using DFT to analyze this time series, the periods of
sinusoidal waves we obtain nearest to 0.985 are 100/102 = 0.98 and 100/101 ~ 0.99. But when using the FAA for
searching for periods of signals, a test period may be chosen as close to 0.985 as possible by increasing the density
of test periods in the search. The precision of the period finally found depends on the sampling interval as well as
the error of observation. Problems of precision will be discussed in the next section together with the FAA it self.
Here we only point out that, if there is only one sinusoidal signal in a time series and there is no observation error, the
precision of the period obtained for the signal is about 2(T'/Lts)At, where T' is the period of the sinusoidal wave,
Lrs is the length of the time series, and At is the sampling interval. For the above numerical example, if the sampling
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interval is 0.1 hour, the precision of the period obtained according to this criteria should be about 0.002 hour that is
more accurate than that given by the DFT. See the next section for more discussion on the comparison between the
FAA and the DFT and FFT.

The FAA was frequently used for evaluating DFT before the invention of FFT (e.g. Bartels, 1935). It was also
used for studying periodical phenomena of which the periods are not submultiples of the time series, such as for
example, variation of geomagnetic filed (Bartels, 1935; Pollak, 1930) and tides (Darwin’s method of tidal analysis,
see Melchior (1978) for example). As the FFT become so popular soon after its invention, the FAA is no longer much
emphasized in modern literatures since then. Recently, a slight variant of it was also used to detect nonharmonic
periodicities in biology (the linear stacking method of Hoenen el al. (2001)). In this work we propose to use FAA for
precisely determining periods of harmonic signals by intensive search, since periods are required to be determined as
precisely as possible in various problems, such as for example, the free oscillation of the Earth. Illustrative example
of numerical computation is made for determining some periods of the Earth’s free oscillation using a time series of
gravity observed by the SG of GeoForschungsZentrum Potsdam (GFZ) installed in Sutherland, South Africa after the
2001 Peruvian Earthquake. A review on the study of the Earth’s free oscillation using the worldwide network of SGs
in the frame of Global Geodynamics Project (GGP) was given recently by Widmer-Schnidrig (2003).

In fact, the intensive search of periods based on the FAA requires a lot of computation. However, this is not a
problem nowadays due to the advance in digital computers.

Another method which is closely related to the FAA is the phasor-walkout method, also known as graphical Fourier
transform, summation dial, complex demodulation (Bartels, 1935; Bolt and Brillinger, 1979; Ziirn and Rydelek, 1994).
This method is particularly suitable for testing if a certain periodicity exists in a time series (Bolt and Brillinger, 1979;
Ziirn and Rydelek, 1994), though it can be used to search for periods precisely as well. The FAA can be considered
as a variant of the phasor-walkout method for searching for periodicities with some approximation in amplitude and
phase in favor of quick evaluation. More explanation on their relation will be given in next section.

Based on our analysis and numerical test, we recommend the FAA, which has a fairly simple algorithm, as an
alternative method, among other methods being used, for example, the autoregressive method (e.g. Chao and Gilbert,
1980) and its variant, the Sompi method (e.g. Hori et al., 1989), the method of fitting a resonance function to the
Fourier spectrum (Bolt and Brillinger, 1979; Dahlen, 1982; Masters and Gilbert, 1983), the interpolated FFT (IFFT)
method, the iterative phase average (IWPA) method and the ESPRIT method (e.g. Santamaria et al., 2000) etc, for
retrieving periodical signals from time series, and determining their periods with high accuracy. It is expected that it
would find additional applications in geophysics.

2 The folding-averaging algorithm

For identifying possible sinusoidal signals in a time series, an amplitude spectrum is to be built. The basic principle
is to estimate, for every one of an array of preassumed test periods, the amplitude and phase using the FAA. This
section is divided into two subsections. The first one explains how to estimate the amplitude and phase of a signal
with known period. The second one explains how to build the amplitude spectrum and accurately estimate the periods
of the possible signals.

We make two assumptions on the time series: (1) the length of the times series is at least as long as tens or hundreds
of the periods of the signals to be studied, (2) the sampling interval is at least as short as a tenth of the periods of the
signals to be studied. These assumptions are fulfilled in numerous cases in contemporary geophysical researches.

2.1 Estimation of amplitude and phase of a signal with known period

Assume that a signal with known period 7" is present in the time series being analyzed and we are estimating the
amplitude and phase of the signal.

First of all we analyze an ideal case that the sampling interval At can divide the period T" exactly, i.e., the number
of observation data in every period, (T//At), is integral. We denote with Vo, Vi, V3, - - - the data in the original time
series sampled at equally spaced time ¢ = 0, At, 2At, - - -. Denote with M the number of short time series, each of
them having N, = (T/At) data (the length of the test period), that can be cut from the original time series, discarding
a small fraction shorter than the test period at the end of the original time series if exists. Arrange the short time series
row by row as shown in Table 1. The averaged short time series Ro, Ry, -+ Ry, is then obtained by averaging

every column of the table,

1 M-1

R; = i Z Vi(r/at)+j » 9]

k=0

as the values of the signal in all elements of the same column are the same.
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Table 1: Short time series row by row

Vo W E VN, -1
Virat Vir/an+1 e Vir/ae+n,—1
V-1 (r/an ViM=1) (/a0 +1 e ViM=1)(T/A) 4N, —1

We remark that (1) may be modified to take into account missing data or gaps in the time series by averaging only
the data present (excluding the missing data in the sum, and replacing M by M minus the number of missing data).

In Table 1, we have not written the subscript of the first data in the short times series, k(T'/At), k= 0,1,---, M —
1, as kN, because they will be different in the case when T'/ At is not an integral number discussed later.

As the length of the times series is assumed to be much longer than the period of the signal, M is very large. Thus,
in the averaging process, signals with different periods other than T is practically averaged out. (In fact, signals of
which the periods are submultiples of 7' remain in the averaged short time series. This problem will be discussed later.
Now we simply assume such case does not appear.)

The random error in the averaged short time series is much less than that in the original time series. Denote the
root mean square error of the observations in the original time series with o. The root mean square error of the average

values in the short time series is then
m=o/VvM-1 2)

By assumption, M is very large. If we have M = 100, the signal to noise ratio of the averaged short time series is
theoretically about 10 times of the original time series. If we have M = 10000, this value raises to 100.
As signals with different periods are averaged out, and the signal to noise ratio is drastically enhanced, the averaged
short time series should be in fact almost a sinusoidal curve, as indicated by numerical examples in the next section.
The amplitude and phase can be estimated using the averaged short time series, of which the signal to noise ratio
is assumed to be raised to reasonable level. Express the signal as

s(t) = asin[(27/T)t + ¢} 3)

which is the same form for the original as well as the averaged short time series. The basic relations for determining

amplitude and phase are
T .
sin T cos
/O s(t) { sin } [(2m/T)t)dt = -2—a{ cos }¢. @

As the sampling interval is assumed much shorter than the period of the signal, we can evaluate the integral in the above
equation numerically using the left Riemann sum (which is identical to the Trapezoid sums due to the periodicity),
replacing the discrete values of s, s(kAt), with Ry, to obtain estimates for a cos ¢ and a sin ¢:

a{ cos }qs - %At It}; Rk{ sin }[(27r/T)(IcAt)]. )

sin cos

Estimates of amplitude and phase can then be computed according to

a=+/(asing)? + (acos$)?, ¢ = atan2(asin¢,acos®) (6)

where the function atan2(z, y) is provided in practically all programming languages.

In the above formulation, we assumed that the sampling interval A¢ divides the period T exactly, i.e., the number
of observation data in every period, (T//At), is integral. But in practice, this rarely happens. As a result, we abandon
this assumption. In the more general situation, the expressions Ny = T/At and k(T/At), k = 0,---,M — 1, in
the subscripts of data in the short time series listed in Table 1 and equation (1) are no longer integral. Like Darwin’s
method of tidal analysis (e.g. Melchior, 1978), we replace Ny = T'/At and k(T'/ At) with the integers closest to them,
and still build the averaged short time series according to equation (1). We see that the values of the signal in the
elements of the same column in Table 1 are no longer the same, but shifted in phase. Fortunately, the phase shifts
between the corresponding elements of any two rows (each row is a short time series) are the same. Hence, in the
averaged short time series, this phase shift does not influence the period, but only influences the estimates of amplitude
and phase. As we assumed that the sampling interval is much smaller than the period of the signal, the phase shift is
small, and thus its influences on the estimates of amplitude and phase are also small. The level of this influence will
be formulated in the next subsection.

Finally, we discuss the relation between the FAA and the phasor walkout method. In the phasor walkout method,
the expression Z,ICVZ_Ol Vi, exp{—i(2r/T)kAt} is evaluated graphically for any test period T, where N is the total
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number of data in the original time series, and ¢ = /—1 (e.g. Ziirn and Rydelek, 1994). It can be readily seen that the
same expression is evaluated in the FAA outlined above (apart from a common multiplier and the approximation due
to the small phase shifts in the FAA), but expressed in terms of amplitude and phase (e.g. Bartels, 1935).

2.2  Amplitude spectrum and accurate determination of periods

Now we assume that sinusoidal signals exist in a time series, but the periods are not known, and the study is intended
to identify the periods.

We begin by analyzing the signature of a sinusoidal signal, of which the exact value of period Tg is not know, in
the averaged short time series built with a test period 7" . We denote with AT the difference between T" and T, so
that

T=Tg+AT. (7
The formula of the signal is the same as (3), but with T replaced by T'. For clarity, we rewrite it out:
s(t) = asin|[(27/Tg)t + ¢]. (8)

Evidently, the signature of this signal in the averaged value R; given by equation (1) is

M-—1
1 . .
5 = i E asin{(27/Tg)[k(T/At) + jlAt 4 ¢} )
k=0
which can be further written as
M-1
_ 1 . .
8 =737 E asin[(27/Tg)(j AL + kAT) + ¢] . (10)
k=0

We see that 3; is the average of the values of the sinusoidal signal at M nodes equally spaced by AT jAt, jAL +
AT, -+, jAt + (M — 1)AT. When AT is very small as compared to T, it can also be understood as the average
value of the signal in the interval between the epochs jAt and jAt + M AT There are two possibilities for the result
of (10).

1. According to (10), the values of the signal at all of the M nodes are equal to its value at t = jAt when

AT = 0,Tg, 2Tk, --. Hence, the value of 5; is also equal to the value of the signal at t = jA¢. So, if a
signal with a period T is present in the time series, and if we have built the average short time series for test
periods T = Tg, 2Tk, - - -, all the averaged short time series contains the signal. Reversely, this means that, in

the averaged short time series built with a test period 7', there may be a signals with periods T,T/2,T/3,- - -.
But when we use (5) and (6) to estimate amplitude and phase, the results obtained are just of those of the signal
with period T, the signals with periods 7//2,T/3, - - - have no contribution to the results, a direct consequence
of the orthogonality of the trigonometric functions.

2. Otherwise, 5; — 0 when M — oo. This result is a consequence of the fact that the average of a sinusoidal
signal in any time interval equal to its period is equal to zero. In practice, M is always a finite number. and hence
5; can not really vanish. According to what was stated below (10), we see that 5; does vanish when M AT =
Tg, 2T, - - -. So in the spectrum built, small sidelobes appear around the highest central peak representing the
signal, the larger is M, the smaller the sidelobes.

Based on the above properties, we can design a process for searching for periods of possible signals: estimating
the amplitude a according to (5) and (6) for an array of test period T To, 71 = T0 + d1p, Ty = Ty +dTIy,- -, the
periods of possible signals are the one which have maximum extreme values of a. But we have to answer another
question: what are the favorite values of dTp, dT7, - - - in the computation? If the values of dTg, dT1, - - - are too large,
we may not see the maximum extreme of the estimate of a at all. The choice of dTo, dT}, - - - depends on the accuracy
we expect. Take reference to (10) again. If Tg is in a interval [T}, Tj+1], for the estimate of a at T) or Ty to be
significantly distinguishable as nearly maximum extreme, AT = Tj1; — T or AT = T, — T must be small enough
in magnitude. We see that the absolute values of either AT = Ty 41 — Tg or AT = T}, — Tg should be smaller than
dT}/2. So, in the search of signals, we choose M dTy,/2 > MAT to be only a small portion of T}, (or Tx+1). The
smaller this value is, the clearer the maximum extreme we see. We chose MdT}, /2 to be only one n-th of T}, whence

This implies that 5; given in (10) is the average of the value of the signal at M equally spaced nodes in a interval
of which the length is at maximum one n-th of the test period (see the analysis below equation (10)). The practical
computation for the search of signals and accurate determination of periods is done in two steps:
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1. Build a less accurate amplitude spectrum by choosing n to be moderately large, for example, between 4 to 16.
Peaks in the spectrum may represent signals;

2. Pick out the peaks and search intensively for the maximum extremes of the amplitude near the peaks by setting
n to its maximum meaningful value to be discussed below.

For any signal with a period T, we can not expect that Tz /At be integral. Thus the approximation by phase shifting
as mentioned in the last subsection should always be assumed. So, making the interval M AT < MdT /2 smaller
than the the possible unavoidable phase shift is meaningless. The phase shifts may be as large as At/2 to both the
left and right sides. So the smallest meaningful value for MdT} /2 is At. This implies that the maximum theoretical
resolution for period is dT}, = 2At/M, which is approximately 2(7}./ Ls)At as mentioned in the introduction, as M
is approximately Lrg/Tx. The value for n is then T}/ At. This ideal resolution may be achieved only under the ideal
situation that only one signal is present in the times series and there is no error of observation. This is certainly not the
case in practice. Unfortunately, we can not give an adequate estimate of error in the periods found using this method,
just the same as the phasor walkout method (Ziirn and Rydelek, 1994). The issue of precision will be discussed later.
The interval of period in which signals are sought is chosen based on our a-priori knowledge on the problem studied.

The estimates of phase and amplitude using the FAA are not those of the original time series, but of the averaged
short time series. In this paragraph we study the differences between the phase and amplitude of the original time
series and the averaged short time series. These differences represent the minimum errors of the estimates using the
FAA. We know from the statement after (10) that the value of the averaged short time series at epoch jAt, §;, can be
understood as the average of the real signal between the epochs jAt and jAt + M AT, where AT is the difference
between the test period 7" and the real period of the signal Tz defined in (7). Now we assume that 5 is the value of a
sinusoidal curve 5(t) at the epoch ¢ = jAt. According to the FAA, 5(t) is the approximation of the signal s(t), and
5(t) can be understood as the average of s(t) in the interval between the epochs ¢ and ¢ + M AT. According to this
relation, we can analyze the signature of the phase and amplitude of s(¢) in 5(t). We assume s(¢) attains its maximum
extreme @ att = ty,, i.e. (210/Tg)tm +¢ = /2. It can then be seen that 5(t) attains its maximum extreme at the epoch
t = t,, — MAT/2, since at this epoch 5(¢) is the average of s(t) in the interval between the epochs ¢, — M AT/2and
tm + M AT/2 containing t,,, as midpoint. So the phase of 5(¢), ¢, is (27 /Tg)(MAT/2) = nMAT/Tg in advance
(as the maximum arrives earlier) compared to that of s(t), i.e.

¢=¢+TMAT/TE. (12)
The amplitude of 3(t), @, is the maximum extreme of 5(¢) which can be obtained to be
a = [(aTg)/(TMAT)]sin|(27/Tg)(MAT/2)]. (13)

These relations of phase and amplitude can be used to estimate errors of phase and amplitude of the signals obtained
using the FAA.

Now we turn to analyze the errors of amplitude and phase of a real signal in the FAA spectrum. Imagine that TE
falls in between the test periods Ty and Ty 1. The estimate of period is then Ty or Tj1 depending on to which one
Tg is closer, and AT = Ty — T at Ty, AT = Ty41 — Tk at Ti41. The phase and amplitude of 5(t) are, according
to (12) and (13),

b =¢+7M(Ty — TE)/TE, (14)
_ aTE . 2w M(Tk - TE)
W= TM(Ty, — Tr) Sm{(T—E) [ 2 ] } (15)
at T}, and _
brs1=0¢+7M(Tpy1 — Tr)/TE, (16)
Ot = N Ty — 1) { (TE) [ 2 ]} (a7

at Tj41. Noticing T}, < Tg < Tj41, wee see that the estimate of phase is in backward at T}, and in advance at Ty,
as compared to that of the signal s(¢). Consider the worst situation that T is at the midpoint between T}, and Ty 1,
ie. Ty — Ty = —dT}/2, Ty1 — Tr = dT} /2. Then, by using (11), we see that the phase and amplitude are

br = ¢ — (27/Tg)[T/(2n)], (18)
ax = {(aTg)/[nTy/n)} sin{(2m/Tp)[Tk/(2n)]} (19)

at Ty, and ~
Gr1 = ¢+ (21/TE) [T/ (2n)], (20)
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art1 = {(aTp)/[nTi/n]} sin{ (27 /Tp)[Tk/(2n)]} 21

at Ty1. In (18) to (21), setting T}, = Tz gives good approximations. So we have

b =0¢—7/n, (22)
ay = (na/m)sin(r/n) (23)
at T}, and ~
Prt1=¢+m/n, (24)
a1 = (na/m)sin(m/n) (25)

at Tj,,1. These relations give the differences between a and @, and ¢ and ¢, which represent the highest precision in the
estimates using FAA for any chosen value of n. This precision may be attained only at the extremely ideal situation:
only one signal is present in the time series, and the observation is error free, just like the situation for attaining the
maximum precision for period. One can easily estimate the precision when highest resolution in period is made by
setting n = T}/ At.

In practice, the time series may be more complicated. For example, it may contain linear tendency which perturbs
the estimate of a and makes it unclear as maximum extreme at the period Tx. In the averaged short time series,
residuals form signals of longer periods not cancelled by averaging are also similar to linear tendency, or even like a
quadratic curve. So, it is preferable that signals outside the interval of interest be filtered out before using the FAA.

For having more accurate estimates of a and ¢, or for having error estimates for them, instead of using (5) and (6),
a least square fit of the averaged short time series by a sinusoidal curve with the period found may be used. This may
be done either by using the cosiner algorithm (Nelson et al., 1979) or by linearizing the problem using the estimates
of a and ¢ according to (5) and (6) as initial guess. A linear, and even a quadratic curve, may be combined with
the sinusoidal curve for reducing the errors of estimates. Nevertheless, the error estimates represent the misfit to the
averaged short time series, but not the original time series, as already discussed.

The same as the phasor walkout method (Ziirn and Rydelek, 1994), we can not give adequate estimates of errors
in the periods found using this method, which is already mentioned earlier in the text. In this work we propose to use
an indirect method to infer errors in the estimates of periods. First, we do the analysis for the time series. Second,
according to the periods, amplitudes and phase of the signals found, we add into the time series some synthetic signals
which are similar to the signals found in the first step, but with periods slightly shifted for not overlapping with the
signals. And third, redo the analysis for the time series containing the synthetic signals. For the synthetic signals,
as the exact values of their periods, amplitudes and phases are known, the absolute errors of their estimates may be
determined. These absolute errors of the estimates of the synthetic signals can then serve as a good reference of errors
for the estimates of the real signals.

2.3 Relation with the DFT and the FFT with zero padding

First we discuss the relation between the FAA and the DFT. In the DFT, the coefficients of the complex fourier series
of the time series are (1/N) Z;V:_Ol Vj exp{—i(2m/T})jAt}, where N is the total number of data in the time series,
i = v/—1and T, = Ltg/k. This is the same as the FAA if T}, = Lts /k is chosen as the test period (notice that
we used the amplitudes and phases of the sine functions in the FAA). So, if we chose - - -, Lts/3, Lts/2, Lrs, i.e.
the periods of the sinusoidal functions used in DFT, as test periods for the FAA, the FAA spectrum is identical to the
DFT spectrum (apart from the approximation due to the small phase shifts in the FAA). So their difference lies on the
differences of nodes of periods of the spectrums built using the two methods respectively. The nodes of periods of the
FAA spectrum was given by (11) which may be made as dense as one want by choosing the value of n large enough,
without exceeding the limit of maximum resolution as discussed before. For the DFT spectrum, the nodes of periods
are submultiples of the length of the time series. Hence, at any node 7" = Lrs/k, the step to the next node is

dT = Lts/(k—1) — Lrs/k =T/(k - 1). (26)

Notice that the meaning of k is similar to that of M in (11), i.e. the number of periods in the times series. So, when &
or M is large, and when n in (11) is set to 2 for the FAA, the distances between two nodes for the DFT spectrum is the
same order of magnitude as that of the FAA spectrum at comparable nodal periods in the two spectra. However, Even
when n in (11) is set to 2 for the FAA, the nodal periods of the DFT and FAA spectrums are not necessarily equal
because the choice of test periods for the FAA is not unique like DFT. Thus we conclude that, when the value of 7 in
(11) is set to 2, the FAA gives a spectrum with practically the same resolution of period as the DFT. The precision of
phase and amplitude of the FAA discussed above also applies to DFT by setting n = 2. So, according to (22) to (25),
we can also conclude that, the largest possible errors in the estimates of phase and amplitude in DFT may attain /2
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and [(m — 2)/7]a = 0.36a even if the observation is error free. This represent in fact the DFT precision in phase and
amplitude, while dT'/2 = T'/[2(k — 1)] represents the DFT precision in period.

Since its invention, the FFT has being used extensively to evaluate the DFT. Here, for illustrative purpose, we
assume without loosing generality that the FFT requires the total number of data in a time series to be power of 2
(though this is not a prerequisite of the FFT). If the criteria is not satisfied, zeros are customarily added by the end
of the time series to the length required, called zero padding. Now we continue to use N to denote the total number
of data in the original times series, and to use N’ to denote the total number of data (that is power of 2) after zero
padding, i.e. N’ — N zeros are added to end of the original time series. In the FFT, the coefficients of the complex
fourier series of the zero-padded time series are (1/N”) Z;v:'a 'V exp{—i(2m/Ty)jAt}, where Tj, = Lipg/k, Lipg
being the length of the zero-padded time series. Remembering that V; is equal to zero when N < j < N’, we can
readily see that, if we chose - - -, L’g/3, L'rg/2, Lirg, i.e. the periods of the sine functions used in the FFT, as test
periods for the FAA, the FAA spectrum is identical to the FFT spectrum multiplied with the factor N’ /N (apart from
the approximation due to the small phase shifts in the FAA). So, the same as the FAA, the FFT can also be used to
build spectrums with high resolution of period of signals by padding the time series with a lot of zeros (Santamaria et
al., 2000). But the FAA is superior for accurate determination of the periods of the signals by extensive search near
the peaks of the spectrums built (the second step of accurate determination of periods stated in the last subsection),
since achieving the highest resolution that the FAA can attain using the FFT requires a huge amount of computation
(though possible).

Due to the above relation of the FAA to the DFT and FFT, we can apply tapers to the FAA in the same way as to
the DFT and FFT.

3 Application for the determination of the periods of the Earth’s free oscil-
lation using SG data

In this section we apply the FAA to estimate some periods of the Earth’s free oscillation using SG data. The objective is
to demonstrate the applicability of the FAA. The detail of the subject itself on the study of the Earth’s free oscillations
using the worldwide network of SGs in the frame of GGP is referred to the recent review by Widmer-Schnidrig (2003).

A property of the Earth’s free oscillations, the decay, was not considered in the last section in building the FAA. A
decaying sinusoidal signal can be written as (Ziirn and Rydelek, 1994)

5(t) = aexp{~[r/(QT)]t} sin[(27/T)t + ¢] @7

where ( is the quality factor. It is straightforward to redo the formulation in the last section while replacing (3) with
this signal. The main characteristics of the conclusion may be inferred by inspection. As the decaying factors of the
signal of period 7 in all the short time series in Table 1 are the same, they can be safely averaged, obtaining as result an
averaged short time series which contains mainly this signal. But the amplitude of the signal in the averaged short time
series is the average all over the original time series. We have also attempted to recover the quality factor by fitting the
averaged short time series with the decaying signal. This seams impossible because the difference in amplitude in one
cycle is too small as the quality factor @ is large in general. There are spectral analysis methods specifically conceived
for retrieving decaying signals like the Earth’s free oscillation (e.g. Bolt and Brillinger, 1979; Chao and Gilbert, 1980;
Dahlen, 1982; Masters and Gilbert, 1983; Lindberg and Park, 1987; Park et al., 1987; Hori et al., 1989). The FAA
is understood as an independent method for period determination. For determining periods of decaying signals, we
cannot use too long time series, since, when the amplitude of the signal become too small, using more data implies
adding more noise. Dahlen (1982) recommended that the length of the time series be @ cycles of the signal to be
recovered.

The main Peru Earthquake of magnitude 8.4 occurred on 20:33:14 UTC, 23 June, 2001. Aftershocks of magnitudes
6.7, 6.6 and 7.6 occurred on 04:18:31 UTC, 26 June, 13:53:48 UTC, 5 July and 09:38:43 UTC, 7 July, respectively.
The gravity time series is sampled at 5 seconds interval, which is first filtered using the least squares band pass filter
of TSoft provided by the Royal Observatory of Belgium (http:/www.observatoire.be/SEISMO/TSOF T/tsoft.html), to
retain signals only between 0.15 to 2 mHz. Then the air pressure effect is corrected using a frequency dependent
method (e.g. Neumeyer, 1995), as this effect may be important for the low frequency or long period free oscillation
band (Van Camp, 1999; Ziirn and Widmer, 1995). Therefore the 5 sec air pressure data is filtered the same way, and a
transfer function between the air pressure and gravity data is calculated using blocks of length 12 hours. This transfer
function is multiplied to the Fourier spectrum of the air pressure data which is then subtracted from the gravity data
Fourier spectrum. The corrected gravity data are finally received using the inverse Fourier transformation. We do see
significant improvement of signal to noise ratio under 1.3 mHz. The time series finally used in this study after filtering
and air pressure correction is from 08:00:00 UTC on June 24 to 02:00:00 UTC on July 4, its length being 234 hours.
Based on a visual inspection of the spectra built using the data of various time spans, the noise level has the lowest
noise level.
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Table 2: Synthetic signals added into the time series. The will serve as a tool to estimate the precision of the estimates
of periods by comparing the assigned and estimated values of them.

Mode Period Initial amplitude Quality factor Initial phase
s nm s~2
oWo 1303.000 0.0047 5700 1.0
1Wo 596.000 0.0026 1800 2.0
oWy 2 2942.000 0.0024 500 2.0
oWyt 2902.000 0.0013 500 1.0
oW? 2864.000 0.0002 500 0.0
W3 2826.000 0.0030 500 -1.0
o W2 2792.000 0.0018 500 -2.0

Amplitude (nm s-2)

-0.15||||||||||||||||||||||||||
0 50 100 150 200 250

Time (h)

Figure 1: The Sutherland SG gravity time series after the 2001 peruvian earthquake after bandpass filtering and
atmospheric pressure correction used in the study. The initial time corresponds to 08:00:00 UTC on June 24, and the
end time corresponds to 02:00:00 UTC on July 4. The length is 234 hours. Based on a visual inspection of the spectra
built using the data of various time spans, the noise level has the lowest noise level. The synthetic signals listed in
Table 2 have been added to the gravity time series.

We use 950, 150 and ¢Ss to test the method. The modes oSp and 1So are the simplest because each of them has
only one singlet in the spectrum. The mode (S5 is split into five singlets 955", m € {-2,-1,0,1,2}.

As proposed in the last section, the precision of estimates of periods will be inferred by comparing the exact and
estimated values of periods of similar synthetic signals added into the time series. The synthetic signal corresponding
to a real signal is chosen as similar as possible to the real signal in property, except a small difference in periods,
necessary for distinguishing them in the spectrum. For conformance with the damping nature of free oscillation, the
quality factor @ is also considered in each of these synthetic signals, though we don’t estimate () using FAA. The
synthetic signals corresponding to 9 So, 150 and 0S5 are oWo, 1 Wo and o Wa, where oW is also split into five singlets
like ¢ S2, W2, m € {-2,-1,0,1, 2}. We chose the periods and quality factors of oWy and ; W, respectively to be
close to those of 99y and 1Sy given by Riedesel el al. (1980). The choice of (W3™, m € {-2,-1,0,1,2} is more
sophisticated, as the property of splitting of ¢S should be retained. We chose their periods by shifting the frequencies
of 053", m € {—2,—1,0,1,2} given by Rosat et al. (2003a) by about the same amount, and their quality factors to
be close to that of 9S> given by Dziewonski and Anderson (1981). For all the synthetic signals, the initial amplitudes
are chosen to be close to those of the corresponding real signals determined by analyzing the time series without the
synthetic signals, and the phases, arbitrarily. The parameters chosen for the synthetic signals are listed in Table 2. The
graph of the time series with synthetic signals added is shown in Figure 1.

As mentioned in the last section, we search for periods in two steps. Firstly, we build an amplitude spectrum
between 0.2 and 2 mHz by setting n = 16. Secondly, we pick out the peaks from the spectrum and search more
accurately for the periods around these peaks by setting n = T, /At, representing maximum possible resolution. Here
we add a third step: estimate the amplitudes and phases using least squares fits to the averaged short time series built
using the periods determined in the second step. The amplitude spectrum built at first step is shown in Figure 2. The
splitting of ¢S and ¢W5 is shown in Figure 3, which is the amplification of a portion of Figure 2. As illustration, we
also present the graphs of the averaged short time series of ¢S and 1S in Figure 4, which are indeed quite similar
to sinusoidal curves. The results from the second and third steps are listed in Table 3. As the quality factor is not
estimated in our approach, the amplitudes we obtain represent only the average, thus not comparable with the initial
values as given in Table 2. Nevertheless, we still listed them in the table. More digits are given for comparison between
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Figure 2: The amplitude spectrum of the gravity time series shown in Figure 1 built using the FAA. The peaks oS,
1S, and (S, are the free oscillation modes studied as examples in this work. The peaks oWy, 1 Wy and oW, are
the corresponding synthetic signals added to the time series for assessing precision of the estimates of periods by
comparing the assigned and estimated values of them.
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Figure 3: The splitting of oS> (left) and ¢W> (right). This is a portion of the Figure 2 enlarged for showing the detail
in this band.

the estimates of the parameters and errors. The results in the table will be discussed in more detail in the following
two paragraphs.

First, we discuss the results for ¢Sy and 15p. Levels of error in the estimates of their periods are inferred from
comparing the assigned and estimated periods of the synthetic signals o Wo and ; W, listed in Tables 2 and 3, which are
lower than 50 ppm for both of them. As the maximum resolution of periods of the FAA as discussed in the last section
is far more accurate, this level of error is the result of the overall influence of all other signals and random errors in
the time series. For the Earth’s free oscillation, the estimates of the period of a mode obtained using different data
should be the same. Here we compare our results with those of Riedesel el al. (1980) who stacked 9 IDA records, and
estimated the period of ¢Sy to be 1227.500 =+ 0.005 (or 4 ppm) seconds using a time series of 2000 hours, and the
period of 1.5y to be 612.929 = 0.018 (or +30 ppm) seconds using a time series of 300 hours. We see that our results
are in close agreement with those of Riedesel el al. (1980).

In this paragraph, we discuss the results of the 5 singlets of the mode ¢.S2. For both ¢S and oWa, the singlets
corresponding to the values of the azimuthal order number m = —2,-1,0, 1, 2 are from left to right in Figure 2. We
see that the m = O singlets of them cannot be clearly seen. Rosat et al. (2003a) gave in their Figure 5 the same graph
for (S, obtained using the data of the Strasbourg SG after the same Earthquake, where the singlet of m = 0 can be
clearly seen. But when we compare the spectrums from the Sutherland and Strasbourg SG data in their Figure 4, we
see that the singlet of m = 0 for the Sutherland instrument can neither be clearly seen. In fact, the amplitude of the
singlets of .S with azimuthal number m = -2, -1,0,1,2 depend on the amplitude of P3™(cos ) (8 is the colatitude)
that is respectively 0.18, 0.23, —0.07, —1.36, 2.14 at Sutherland, and 0.11, —0.25, 0.34, 1.49, 1.31 at Strasbourg. We
see that the magnitude of PJ(cos ) at Sutherland is only one fifth of that at Strasbourg. So we attribute this low
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Figure 4: The averaged short time series of Sp and 1Sy corresponding to the maximum amplitude extremes. They
are used for estimating amplitudes and phases. As the modes studied decay, only their average amplitudes can be

estimated.

Table 3: Estimates of parameters of the synthetic and real signals. The differences between the amplitudes and phases
of the synthetic signals oWy, 1 Wy and oWy in this table and their corresponding exact values listed in Table 2 serve
as error estimates for the free oscillation modes ¢So, 150 and ¢S2. The amplitudes are not comparable because those
listed in Table 2 are the initial values, and those in this table is the average ones. The singlets oW and 059 are too
small in amplitudes, and are not estimated.

Mode Period Amplitude RMS error Phase RMS error
s nm s 2 nm s~2
oWo 1303.063 0.003996 0.000027 1.0788 0.0068
1Wo 596.018 0.001144 0.000003 2.0012 0.0027
050 1227.509 0.004042 0.000025 2.0167 0.0063
150 613.010 0.001055 0.000003 -0.3793 0.0029
oW, 2 2941.289 0.000984 0.000042 1.9352 0.0429
oWyt 2899.545 0.000632 0.000173 0.6680 0.2744
oWy - - - - -
W3 2826.855 0.001134 0.000099 -0.7947 0.0873
oW2 2791.475 0.000904 0.000026 -2.1804 0.0285
0552 3330.855 0.001020 0.000018 -1.7162 0.0181
055 3289.067 0.000638 0.000026 2.0646 0.0404
059 : : : : :
053 3184.754 0.001121 0.000056 0.4112 0.0499
0532 3140.636 0.000922 0.000025 -2.5517 0.0272

Table 4: Comparison between the estimates of the periods of the .5 singlets of Rosat et al. (2003b) obtained by fitting
a resonance function to each Fourier spectral peak and those obtained using the FAA using the Strasbourg SG data
(Unit: second). The first and second lines are respectively the estimates and their errors of Rosat et al. (2003b). The
third line is our estimates. And the last line is the disagreement between the estimates of Rosat et al. (2003b) and the

ours.

0557 055" 059 053 053
Rosat et al. 3334.91 3284.05 3235.72 3186.09 3143.57
£0.59 (177 ppm)  +0.73 (222 ppm)  £0.60 (188 ppm)  +0.52 (163 ppm)  £0.63 (200 ppm)
Our results 3336.61 3284.65 3235.19 3185.28 3144.70

Disagreement  +1.70(509ppm)  £0.60(182ppm)  +0.53(164ppm)  +0.81(254ppm) +1.13(360ppm)
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amplitude of the m = 0 singlet of 7S5 to the data of the Sutherland instrument, and is not studied. As W5 was made
as closer to ¢S5 as possible, it is natural that its m = 0 singlet is neither clear in the spectrum. Level of errors in
the estimates of the periods of the (.S, singlets are estimated by comparing the assigned and estimated periods of the
oW singlets listed in Tables 2 and 3. We see that the result of (W5 ! has the largest error, which is 845 ppm. This
is conceivable as this singlet has the smallest amplitude. The error level of other singlets are below 300 ppm. For
comparison, we list in Table 4 the estimates of for the periods of the oS> singlets obtained by Rosat et al. (2003b)
using the Strasbourg SG data. Their disagreement from our estimate using the Sutherland SG data listed in Table 3
are 4.06 (1216ppm), 5.02 (1525ppm), 1.34 (419ppm), 2.93 (934ppm) for m = —2, —1, 1, 2 respectively. We see that
these differences are large that seems difficult to accept. If we compare the oS spectrum of the Strasbourg SG data
given in Figure 2 of Rosat et al. (2003b) with our Figure 2, we see that the Strasbourg spectrum is very clean, but the
Sutherland spectrum is polluted by some lower peaks which may be local background noises, or hums. Perhaps, the
periods of the Sutherland spectrum are biased by these hums with extremely close periods. For example, for the lowest
peak, 0S5 ! which may be more affected by the hums, our result agrees with that of Rosat et al. (2003a) at 1525 ppm,
but for the highest peak, oS3, which may be less affected by the hums, the agreement is as good as 419 ppm, quite
close to our error estimate using synthetic signal.

As supplement of comparison, we have also applied in the same way the FAA to a 228 h-long record of the
Strasbourg SG (from 12 O’clock of Jun 25, 2001 to 0 O’clock of July 5, 2001, this time span is chosen such that the
noise is lowest in the oS5 band in the spectrum according to the visual examination). The results are also listed in
Table 4. The last row of the table is the disagreements between our results and those of Rosat et al. (2003b), which
should be acceptable as compared to the error estimates of Rosat et al. (2003b) since the data sets used are in fact not
exactly the same.

As demonstration of the use of taper, we have applied a Hanning window to the same data set used by Rosat et al.
(2003b) after least square band pass filtering to keep signals in the range 0.2-0.4 mHz (the band of the mode 052), and
then determined the periods using the FAA. The periods for the 5 singlets of the mode ¢Sz form = —2,-1,0,1,2 are
respectively 3334.99, 3283.17, 3235.65, 3186.03, 3142.86 seconds, which are in general closer to the results of Rosat
et al. (2003b) than those obtained in the last paragraph (listed in Table 1).

4 Concluding remarks

In this work, the FAA is applied to seek periodical signals in time series and to determine their periods accurately.
Various aspects of the FAA are discussed, including the signal-to-noise ratio improvement in the averaged short time
series, the highest possible accuracy of the estimates of the periods (for an ideal case), the signature of the real signal in
the short time series, the errors in the estimates of amplitudes and phases caused by errors in the estimates of periods.
The relations of the FAA with the DFT and the FFT with with zero padding are also investigated, showing that tapers
can be used for the FAA in the same way as for the DFT and FFT.

A weakness of the FAA is that it does not provide with estimates of errors for the estimates of periods. However, we
used an indirect method for assessing the errors of the periods which consists of adding into the time series synthetic
signals that are quite similar to the real signals found, and then using the differences between the exact and estimated
values of periods of these synthetic signals as a measure of errors for the estimates of periods for real signals.

To test the technique, we have applied it to numerous synthetic time series that consist of sinusoidal signals and
random noises of different level. The results demonstrate the feasibility of the method.

For geophysical application, we used it to determine the periods of the Earth’s free oscillations using a time series of
gravity observed by the GFZ SG installed in Sutherland, South Africa after the 2001 Peru Earthquake. Comparison of
our results with previous works are made using the modes ¢Sy, 1.5y and o.S2. For all the synthetic signals corresponding
the these modes added for accessing precision, our estimates of periods show very close agreements with the exact
values assigned. Our estimates of periods for 9Sp and 1S are also in very good agreements with the very elaborated
estimates of Riedesel el al. (1980). But for the mode ¢S2, the the agreement between our estimates of period and the
recent estimates of Rosat et al. (2003b) we have chosen for comparison is less good, which may be due to the high
noises very close to the frequency of ¢S in the Sutherland data. We have also applied the FAA to the Strasbourg SG
data that Rosat et al. (2003b) used, and the results show very good agreement.

Based on our experiments, we conclude that the FAA as a valuable method, among other methods being used, for
retrieving periodical signals from time series and determining their periods with high accuracy. It is expected to find
other applications in geophysics.

Acknowledgment We gratefully acknowledge B. Ducarme, M. Van Camp and S. Rosat for helpful discussions. S.
Rosat has also provided the preprocessed Strasbourg SG data. J.Y. Guo is supported by the Natural Science Foundation
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The major part of this guidebook has been presented and tested at the
INTERNATIONAL SEMINARY ON THE APPLICATIONS OF THE COMPUTER
PROGRAM VAV — VERSION 2003 FOR TIDAL DATA PROCESSING, held in the
Institute of Astronomy and Geodesy (CSIC — UCM) in Madrid, 21 — 24 October 2003.
Afterwards we have introduced some improvements of the text, as well as a few new
examples, e.g. application of VAV on ocean tidal data for the detection of the shallow
water tides.

For practical use of this program the users can download from the ICET WEB
site http://www.astro.oma.be/ICET:

* The program VAV, together with all materials, necessary for the execution of
the examples of the guidebook, as well as for other applications of the program.

* A version of the guidebook in PDF format.

A CD-ROM with the same material can be sent on request. Please contact

Prof. B.ducarme, ICET Director, Ducarme@oma.be

We hope that the experience in the tidal data processing, incorporated in the
program VAV and this guidebook will be helpful to the tidal community for
investigation and practical work in both solid Earth and ocean tidal domains.

Brussels, December 15, 2004
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A. GENERAL REMARKS ABOUT THE GUIDEBOOK.

The guide has 7 initial sections, including this one, numerated by A through G.
Section B provides a bit of the theory of the VAV program. The remaining sections C
through G deal with general practical elements.

The idea of the guide is to explain the use of VAV by showing examples. In this
sense, 21 sections with examples follow the general sections. They are numerated by
Example 1 through Example 21. The examples demonstrate the use of the options,
which may be of most common interest. A list of the options used in the examples can
be found in an appendix to the guide.

This guidebook does not deal with the theory of the methods and the algorithms,
used by VAV. We have confined by a very brief consideration of the models of the tidal
signal and the drift in Section B. The users, interested in a deeper understanding, we
may use the papers, listed in the attached Bibliography, in particular the recent
publications (Venedikov, Arnoso, Vieira, 2001, 2003), devoted to VAV. Many of the
papers in the Bibliography are not referred in this text but they are implicitly used. The
authors of VAV are, of course, at disposition for personal consultations.

The tables and figures in the text are numerated within the correspondmg
sections. E.g. Table D.2 is the 2" table in Section D and Figure 17.3 is the 31 figure in
Example 17.

A variant to rapidly start using VAV is (i) learning from Section C how to install
the necessary data, then (ii) go directly to Example 1.

B. GENERAL INFORMATION ABOUT THE VAV PROGRAM.

The main algorithm of VAV is tidal analysis according to the Method of the
Least Squares (MLS). The application of MLS is based on a model of the tidal signal,
which consists in the following.

Every tidal phenomena has a corresponding theoretical tidal signal whose
expression s(¢) at time ¢ is

s@)=Yh, cos(9, () = Y_h,cos(¢,(0) +wr) (1)

Here o is frequency of a tide or tidal wave, taking m known discrete values
® = 0,,0,,...0,. In this expression ® is expressed in radians per unit of time. In

practice, we deal with frequencies o in deg/hr (degrees of arc per hour), in cpd (cycles
per day) and in cph (cycles per hour).

VAV uses s(¢) provided by the development of Tamura (1987) of the tide-
generating potential with m =1198 tides with ® >0 and 2 constant terms with ©=0. A
list of the tides is stored in the file tamura.inp (see Section C).

The quantities %, and ¢, (#) in (1) are called theoretical amplitude and phase at

time ¢ of the tide with frequency . All parameters of (1), ie.
o, h, and ¢, (¢) or ¢, (0) are precisely known quantities.

In the observed data of the tidal phenomena we have an observed tidal signal
whose expression S(7) at time ¢ is
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S(t)=Y H,cos®,(1)=) H,cos(®,(0)+ot) )

where o takes the same known discrete values as in (1).
The quantities H, and @ () are called observed amplitude and observed phase

at time ¢. Unlike the theoretical 4, and ¢ (z), the observed H, and ® (¢) are

unknown quantities, which are subject to estimation by the tidal analysis.
The relation between (2) and (1) can be described by using the so-called
amplitude  factor S,=H,/h, and  phase  shift or phase lag

k, =@ ()¢, ) =D,(0)-0,(0) (denoted also by the Greek o). Namely, we have

S(t)=Re) x(w)h, Exp(ip,(t)) where x(w) =38, Exp(ik, ) 3)

In the classical methods of analysis in the Earth tide domain the directly
estimated unknowns used to be a set of the observed H_  and ® (0) (actually

H,cos®_ (0) and H, sin®, (0)). This kind of unknowns does not allow a correct

application of MLS, because it is impossible to take into account all tides. The obstacle
is that the tides are concentration in frequency bands or tidal groups with very close ®,
which cannot be separated. Le., if we include all tides in the observational equations of
MLS, they become linearly dependent. If we include a restricted number of main tides,
the equations are not correct and we shall get biased estimates of H_, and @ (0) and

incorrect estimates of the precision.
VAV uses the unknowns proposed and applied by Venedikov (1961, 1966).
They are a set of values of the x(w), more concretely a set of the quantities

=9 cosk,_ and =-8 sink . Under the assumption that x(®) is a constant for
w (0] (0] T](JJ [0] (o] p

groups of tides with very close ® we can create correct linearly independent equations,
including the model (3) with all tides and a moderate number of unknown coefficients
x(w). Through the estimates of the unknowns, respectively of 3, and k, we can get

the estimates of all observed H, and @_(0), not only of a small number of biased

amplitudes and phases of some main tides.

The use of this kind of unknowns for the Earth tide data is based on the theory of
the Earth deformation, as well as on an abundant experience.

It is easy to show that (3) is equivalent to the model of the ocean tidal signal,
proposed by Munk and Cartwright (1966). The admittance function x(w) in their model

is a continuous function of ®, theoretically defined for all ®.
In our model x(®) is a stepwise function, remaining constant for some short

intervals of @, covering a tidal group, which is not defined for intervals of w, empty of
tidal energy. We do not see a contradiction with the model of Munk and Cartwright
which makes us believe that VAV can also be efficient for the ocean tidal data with a
careful selection of the tidal groups.

VAV uses an approximation of the drift by independent polynomials in short
time intervals of length AT hours. The coefficients of the polynomials, which are
different in different intervals, are treated as unknowns by MLS. In our examples we
shall use AT =48 and AT =24 but other values of the same order are also available.

The application of MLS uses a separation of the drift unknowns. This operation
appeared to be equivalent to a filtration of the intervals, which separates the main tidal
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frequencies and eliminates the drift. Through the filtration we get the data transformed
from the time domain in the time/frequency domain, i.e. in a set of filtered numbers. In
this sense we can consider AT as a time window, through which pass the data. Further
MLS is applied namely in the time/frequency domain. This means that we create and
solve the observational equations about the filtered numbers.

The use of the transformed or filtered data allows getting frequency dependent
residuals and thus - frequency dependent estimates of the precision. In such a way VAV
takes into account the colored character of the noise (red noise).

VAV allows the data to have gaps, jumps and perturbations of any kind between
the intervals, as well as small gaps within the intervals. The principle to deal with the
gaps is the most natural one: we create observational equations for the existing data and
we do not create them for not existing data, as well as for perturbed data, which we
want to ignore. This allows avoiding the interpolations and the reparations of doubtful
data, operations, introducing anomalies and noise with very unpleasant properties.

An important task, followed by VAV is to study carefully the data. The purpose
is, on the one side, to clean the data from anomalies and thus to get better analysis
results. On the other side, we take into account, in particular for the Earth tide data, that
every anomaly may be a geophysical signal.

In principle, the Earth tide observations, at the moment, may reveal with the
highest possible sensibility and precision the slightest motions at the Earth surface.
Hence, if any kind of deformation can serve as an earthquake and volcano precursor, it
can be caught by our observations. One of the deplorable consequences of the
interpolation/reparation of the data is that we cannot distinguish when an anomaly is a
signal and when it is artificially introduced.

In the creation of VAV we have tried to include in one and the same program
many different options. Nevertheless, the practical use of VAV is very simple, but the
explanation of how to work is not so simple. Due to this in the following text we have
chosen to give the explanations by using examples of the most commonly used
applications of VAV. We hope that it is enough to start with a restricted volume of
options, after which, through consultations with the authors of VAV, we can go further.

It may be encouraging for the users of VAV to know that this program is the
product of the work of experienced specialists during many years. This work has started
by the creation of the first method and computer program for tidal analysis (Venedikov,
1966), which has used successfully MLS by taking into account all tides, providing a
frequency dependent estimation of the precision and dealing with data having gaps and
arbitrary length.

C. INSTALLATION OF THE PROGRAM VAV AND DATA ORGANIZATION.

The CD attached to this guide contains 3 main folders:

\aaavav_03\ - called executable folder
\a_data\ - folder with a data bank, used for the examples in this guide.
\aaafor_ 03\ (connected to \aaavav_03\) — the codes of all routines of VAV.

The folder \aaavav_03\ can be installed directly on the disk (C:) or in any folder
in (C:). It is possible to change the name \aaavav_03\.
The initial content of \aaavav_03\ is listed in Table C.1.
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Table C.1. Content of the executable folder \aaavav_03\

File name Short comment

vav_03.exe Executable (exec) file

a list files.inp | Description of the input data and output folders
all_ini_inp Control data file, common for all series of data
groups.inp Variants of tidal groups

tamura.inp Development of tide generating potential of Tamura
cwords.inp Input of the available names of options

out_txt.inp Input of the descriptions of various output tables
Shallow.inp Input, defining a set of shallow water tides

The folder \a_data\ should be copied directly in (C:). Its structure is shown by
the following scheme.

\a_data\
brus0200.ini " control data file
\brussels\ P !
brus0200.dat . data file ;
\brus_out_a\ | | output folder a
\brus_out_b\| | output folderb
cant6824.ini
\cantley\
cant6824.dat
v \cant_out_a\

\cant_out_b\

etcetera ...

Every series of data has its own folder. Within it are stored the data file and a
corresponding control data file. To the folder are connected two output folders.

The user can change this scheme, e.g. several data files can be stored in one and
the same folder. We use different pairs of output folders for every series, but it is
possible to use one and the same pair of output folders for all series of data. We use one
and the same names for the data and the control data files with different extensions: .dat
and .ini. This is convenient, but not necessary.

Obligatory are only two things: (i) we must create at least two different output
folders and (ii) the organization chosen and all names of folders and files should be
correctly described in the file a_list_files.inp.

In Table C.2 we give the a_list_files.inp, corresponding to the scheme given
above and the data, included in \a_data\. We have four series of super conducting tidal
gravity data (SG data) from the Global Geodynamics Project (Crossley, 2000, Ducarme
and Vandercoilden, 2000) and a series of ocean tidal data from San Juan, kindly
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provided to us by Dr. Harald Schmitz-Hiibsch from Deutsches Geoditisches
Forschungsinstitut in Munich. The data ere recorded by the University Hawaii Sea
Level Center.

Table C.2. Content of a_list_files.inp with information about the names and the

disposition of series of data, as well as of the output folders.

Tidal station | Content of a_list_files.inp Comments
\a_data\brussels\brus0200.ini Control Data file

SG data

Brussels, \a_data\brussels\brus0200.dat Data file

Belgium \a_data\brussels\brus_out_a\

- — Two output folders
\a_data\brussels\brus_out_b\
\a_data\cantley\cant6824.ini Control Data file

SG data
Cantley, \a_data\cantley\cant6824.dat Data file
Canada \a_data\cantley\cant_out_a\

= Two output folders
\a_data\cantley\cant_out_b\
\a_data\strasbourg\stra0306.ini | Control Data file

SG data

Strasbourg, \a_data\strasbourg\stra0306.dat |Data file

France \a_data\strasbourg\stra_out_a\

Two output folders

\a_data\strasbourg\stra_out_b\
\a_data\vienna\vien0698.ini Control Data file

SG data - -

Vienna, \a_data\vienna\vien0698.dat Data file

Austria \a_data\vienna\vien_out_a\

= — Two output folders
\a_data\vienna\vien_out_b\
\a_data\sanjuan\sanjuan.ini Control Data file

Ocean data - -
San Juan, \a_data\sanjuan\sanjuan.dat Data file
Puerto Rico  |\a_data\sanjuan\san_out_a\

= — Two output folders
\a_data\sanjuan\san_out_b\
end Terminates this list

D. CONTROL DATA FILES.

Every data file is accompanied by a control data file with some data, called here
CDATA. The CDATA consist of what we call options. We shall explain the format of
an option by the following example:

>F-T-window: 24 *comment: we choose a time window of 24 hours
comment is also every line, which has NOT “>” in the 1* column
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Here >F-T-window: is a control word or a name of an option, “24” is an input
and the text after the starlet * is an arbitrary comment. Comments are also all lines
without “>” in 1% column, like the second line above, as well as any blank line.

This control word is a kind of an acronym of: “Filters, time window to be used”.

Through this option we choose the length of the time window to be 24 hours.
The time window is actually the length of our filters, which eliminate the drift.

We can arbitrarily use letters in upper and lower case, with or without the . at
the end, e.g. >-T-wIinDOw 24 . Many of the names of the option can be abbreviated,
e.g. >f-T-wInDOw 24 can be replaced by >f-T-W: 24 or by >f-T-W 24

If >F-T-window: 24 is not used, VAV will accept the default value of the time
window, which is 48 hours.

The statement has not an effect if it is replaced by one of the following forms

>F-T-window: Option, without any input
>F-T-window: *24 Input, preceded by a starlet *
*>F-T-window: 24 Starlet *, preceding the option

A part of the CDATA for given series, e.g. the options defining the coordinates,
is more conservative and it may be kept in all or almost all variants of the processing.
We shall call it “Basic CDATA” (see Example 1, Table 1.1). The control data files in
our \a_data\ are prepared with an initial content, which is namely the Basic CDATA.

For every particular processing we may add some “New CDATA” to the Basic
CDATA. In the examples, which will be demonstrated, the New CDATA, prepared for
a next example, should replace the New CDATA already used, while the Basic
CDATA are generally kept. So that generally, the CDATA are used according to the
following scheme:

New CDATA |To be replaced in a next variant of processing
All CDATA - - - :
Basic CDATA | To be kept in almost all variants of processing

E. COMMON CONTROL DATA FILE “all_ini.inp”

The file all_ini.inp is situated in the executable folder \aaavav_03\. It contains
CDATA like the other control data files. The difference is that the effect of the CDATA
is applied to all series we shall process. Hence, all_ini.inp is comfortable to be used
when we have to deal with several series of one and the same type, on which one and
the same options are applied. It is possible to leave all_ini.inp empty, without any
information in it. We shall initially use the all_ini.inp, shown in Table E.1.

Table E.1. Content of all_ini.inp

Options Comments

The origin of time ¢ =0, used in various output
>D—origin-of-time: 1982 01 01 00 |files and for the definition of the phases (see
Section B) is chosen at the epoch 0",01.01.1982.

>0UT-compare-tide-name: Q1 In the files like a_delta.dat with results from

various analysis of one and the same series and

>0OUT-compare-tide-name: K1 | ajidelta.dat with results from different series, the

>0QUT-compare-tide-name: N2 results about the tides Q1, K1, N2, M2 will be

listed. It is possible to use till 26 tidal names, but a
small number is more practical.

>0UT-compare-tide-name: M2
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F. DATA FORMAT.

The data format can be chosen by the option >D-format: The default case is the
international format, accepted by ICET (International Centre for Earth Tides). Our SG
data are prepared in this format.

The data are disposed in columns:

[Datel |Date2 [Channel 01 |Channel 02 |Channel 03 |.... |

Here Datel = year, month, day and Date2 = hour, minute, second of the data in
the corresponding line, and channel 01, 02, ... are columns with data, e.g. tidal, air-
pressure, temperature, etc. The dates should be in UT (universal time).

An inconvenience is that the data in this format cannot be directly used to apply
standard plotting systems like GRAPHER. In order to avoid this inconvenience, we
have an automatic output of the data in file vav_out.dat where we have 2 columns with
time in days and hours, which allows using common ways to draw a graph of the data.

In our Basic CDATA we have included the option >D-format: unf. During the
first application of VAV on given series of data this option should be excluded, e.g. by
setting *>D-format: unf.

After the 1% run of VAV on given series, we get an unformatted copy of the
data. E.g. for cant6824.dat we shall get the unformatted cant6824.unf. It is
recommendable in all next runs to include again >D-format: unf, which accelerates
considerably the data input.

An example of a different format is the data of San Juan. Another format, which
can be used by VAV, is described in Example 20.

G. OUTPUT FILES AND FOLDERS.

After every run of VAV on given series we get the main analysis results in the
output folder a, file analysisNN.dat. Here NN is a 2 digit number, startmg by 99 for
the first run, i.e. from the 1% run we get analysis99.dat. After the 2™ run we get
analysis98.dat, by keeping analysis99.dat. Then, after the 34 run we get
analysis97.dat, etc. E.g., by applying 5 runs, we shall get the content of the output
folder a, shown in Table G.1.

Table G.1. Content of output folder a after 5 runs.

Run 5 | Analysis95.dat
Run 4 | Analysis96.dat
Run 3 | Analysis97.dat
Run 2 | Analysis98.dat
Run 1 | Analysis99.dat

The process can continue till we get analysis40.dat. Then VAV interrupts the
experiments, by asking all files analysisNN.dat to be deleted.

The main analysis results are at about the bottom of analysisNN.dat and they
look like those in Table G.2 (without the number of the columns which are added here).
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Table G.2. Sample of analysis results in a file analysisNN.dat.

tidal group analysis results
frequency interval numb name main amplit. phase
(cycles/day) tides of observed MSD of factor MSD of lag MSD of
group amplit H H delta delta kappa kappa

(1) (2) (3)  (4) (5) (6) (7 (8) (9) (10)

2.75324 : 3.08125 81 M3 3.9825 0.1152 1.06735 0.03088 -1.339 1.659
3.00000 : 3.00000 1 s3 0.3358 0.1161 76.3731 26.4121 62.514 19.823

3.79196 : 3.93790 10 M4 0.1422 0.0968 3.31073 2.25433 249.553 38.756
4.00000 : 4.00000 1 sS4 0.1257 0.1022

4.83068 : 4.83068 1 M5 0.2758 0.0955
5.00000 : 5.00000 1 S5 0.1744 0.0955

5.79682 : 5.79682 1 M6 0.0885 0.0836
6.00000 : 6.00000 1 S6 0.0826 0.0834

Columns 1 through 4 in Table G.2 describe the used tidal groups. E.g. in the first
line with numerical data we have a group named MF which includes 279 tides from the
development of Tamura, whose frequencies @ are 0.00015 cpd <@ <0.24995 cpd.

In many cases the name of a group coincides with the name of the main tide
(highest amplitude) in the group as it is given in tamura.inp. This is the case in Table
G.2. When variants with a higher number of groups are used, the name of the group
may be conventional because it does not exist in our tamura.inp.

Columns 5 through 10 contain results from the analysis of the data about the
quantities, defined in Section B.

Column 5 provides the estimated observed amplitude H of the main tide in the
corresponding group, i.e. the tide with the highest amplitude.

Columns 7 & 9 provide the estimates of the parameters & and x, which are
accepted to be one and the same for all tides in the corresponding group.

MSD in columns 6, 8 & 10, as well as further in this guide means: “mean square
deviation” or “standard deviation” or “estimated standard”, as well as “mean square
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error”. The MSD of a quantity x will be often denoted by o(x). By using this, we may
say that columns 6, 8 & 10 contain o(H), o(3) and o(x) respectively.

VAV uses a set of complex filters, amplifying selected basic frequencies 2. In
the example above we have used the default values Q= 1,2,3,4,5 & 6 cpd. The

precision is estimated by the residuals of the filtered numbers and thus we get frequency
dependent MSD of unit weight, i.e. MSD o(Q2) (MSD at frequency Q). It also

computes a hypothetical MSD o(White Noise) under the unrealistic assumption for
white noise. These estimates can be found in analysisNN.dat in a table under the title

frequency dependent MSSD (mean square deviations)

At the same place we can also find the Akaike Information Criterion AIC
(Sakamoto et al., 1986) determined at every frequency (frequency dependent AIC) and a
global value, corresponding to o(White Noise) .

Figure G.1 shows the MSD taken from this output. The graphics show that using
the assumption for white noise will overestimate the precision at the lower frequencies
and underestimate it at the higher frequencies.

10
8 -
6 —
4 - o(White Noise)
1 2 3 4 5 6
frequency in cpd

Figure G.1. Frequency dependent MSD o(Q) determined by VAV and MSD
o(Wite Noise) obtained under the false assumption for white noise.

Through the rows results at filter frequency ... the output in Table G.2 shows
the relation between results and the filters used. E.g. the row

indicates that the following results for 2N2 through S2 are mainly related with
frequency Q =2 cpd and the precision is estimated by using o(2 cpd) = 4.464.

In parallel to the output analysisNN.dat VAV provides analysis results in file
all_tides.dat in the output folder b. We have the estimated amplitudes and phases for
all tides, e.g. for the 1198 tides of the development of Tamura. This output is a
complement to the output in analysisNN.dat, which may be more interesting for the
ocean tidal data. Table G.3 is an example of this output. Explanations about the content
of this output are given in the file all_tides.dat itself.

The unit of the amplitudes and their MSD in all output files is equal to the unit
of the input data. The phases and the phase lags are always in degrees of arc. The
amplitude factor § is a measureless quantity, when the unit of the data is the same as



11048

the unit of the theoretical tides. More about the unit of the data can be found in Example

21.

In output folder b are stored most of the other output results, associated with
the analysis results, e.g. some residuals, samples of the analysis results, etc.

Table G.3. Sample of the data in an output file all_tides.dat.

Nr Doodson Darwin freq_cpd freq_cph amplitude msd_ampl phase
555 165-465 1.002575549 0.041773981 0.055855 0.000034 36.8468
556 165-545 1.002590816 0.041774617 9.689590 0.005971 70.1791
557 165-545 1.002590816 0.041774617 0.009408 0.000006 250.1791
558 165-555 K1l 1.002737909 0.041780746 489.278322 0.301484 195.0274
559 165-555 1.002737909 0.041780746 0.088547 0.000055 15.0274
560 165-557 1.002738171 0.041780757 0.017545 0.000011 220.3863
561 165-565 1.002885003 0.041786875 66.384081 0.040905 139.8756
562 165-565 1.002885003 0.041786875 0.010377 0.000006 319.8756
563 165-575 1.003032097 0.041793004 1.424856 0.000878 264.7239
564 165-655 1.003047364 0.041793640 0.159813 0.000098 298.0563
565 165-665 1.003194458 0.041799769 0.066009 0.000041 242.9045
566 165-765 1.003503912 0.041812663 0.012928 0.000008 345.9334
567 165-775 1.003651006 0.041818792 0.011081 0.000007 290.7816
568 166-544 1.005328594 0.041888691 0.012005 0.000007 248.0961
569 166-554 PSI1 1.005475688 0.041894820 3.826102 0.002358 192.9444
570 166-556 1.005475949 0.041894831 0.058176 0.000036 218.3033
571 166-564 1.005622782 0.041900949 0.069257 0.000043 137.7926
572 167-355 1.007594819 0.041983117 0.242863 0.000150 10.1625
573 167-365 1.007741913 0.041989246 0.067411 0.000042 315.0107
574 167-455 1.007904274 0.041996011 0.028234 0.000017 113.1914
575 167-465 1.008051367 0.042002140 0.010594 0.000007 58.0396
576 167-553 1.008213466 0.042008894 0.096037 0.000059 190.8613
577 167-555 PHI1 1.008213728 0.042008905 6.966006 0.004292 36.2202
578 167-565 1.008360822 0.042015034 0.266872 0.000164 161.0685

©000000000000000000000000000000000000000000000000000000000000000006000000000000000000000000

Example 1. Start of VAV and simple tidal analysis, data Cantley.

The Basic CDATA for Cantley are shown in Table 1.1.

Table 1.1. Basic CDATA in cant6824.ini.

Options or statements

Short comments

>D-format: unf

Unformatted data, after the 1% application of VAV.

>MCH-model: 1

Multi-channel (MCH) analysis, model 1.

>MCH-channel: 2

MCH analysis with air-pressure in channel 02

>D-nm-input-channels: 4

Number all data channels in cant6824.dat

>D-max-nm-data: 77105

Number = or > of the data in cant6824.dat

>D-tidal-channel: 1

Indicates that the tidal data are in channel 01

>ST-long-e: 284.1929

Geographic longitude, positive to the East, degrees of arc

>ST-latit-n: 45.585

Geographic latitude, positive to the North, degrees of arc

>ST-altit-meters: 269.0

Altitude in meters

>ST-name: Cantley ...

>ST-name: SG GRAYV...

Till 20 lines with name of station, data, instrumentation,
etc., till 80 columns in a line
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We shall apply on the data Cantley a very simple tidal analysis, which means
that we shall use default cases and values, without the MCH analysis. For that purpose
we shall exclude the first 3 options in Table 1.1, by setting

*>D-format: unf VAV will read formatted data

*>MCH-model: 1 |Simple analysis without multi-channel
*>MCH-channel: 2 (MCH) analysis

After this preparation, VAV should be started in one of the following ways:

1. In DOS we should go to the folder \aaavav_03\, write there the command
“vav_03” and press “return” key.

2. By using the “windows explorer” we should click on folder \aaavav_03\ then
click on file vav_03.

3. Through a FORTRAN project, including all routines in \aaafor_03\.

After VAV is started we get displayed the list of the data files, taken from
a_list_files.inp, followed by a message of VAV, as shown in Table 1.2.

Table 1.2. Initial message of VAV with information, taken from a_list_files.inp

data at disposition:
\a_data\brussels\ brus0200.dat ------- file nr: 01
\a_data\cantley\ cant6824.dat ------- file nr: 02
\a_data\strasbourg\ stra0306.dat ------- file nr: 03
\a_data\vienna\ vien0698.dat ------- file nr: 04
\a_data\sanjuan)\ sanjuan.dat ---—---- file nr: 05
followed by a message of VAV: Our answer:
Enter Nr of a file, "return" is accepted as 05: 2

The number “2”, written as answer of the message, chooses the data Cantley for
processing. :
After pressing the “RETURN” key, VAV is executed. We get the 1* results in

|\cant_out_a\ analysis99.dat. |

A sample of results about the tides, selected in all_ini.inp, is also displayed in
\cant_out_b\, files: a_delta.dat, a_kappa.dat and a_hamplit.dat.

We shall use only a_delta.dat. Table 1.3 shows some selected data, taken from
a_delta.dat in this example.

Table 1.3. Cantley, sample of results by simple analysis, amplitude & factors and MSD
o(d), taken from a_delta.dat.

RUN_NR 5(Q1) 6 (K1) 5 (N2) o (M2) AIC
RUN_01 1.16284 |1.14830 |1.20964 |1.20360
MSD o (8) |.00159 |+.00021 +.00052 |*.00010

134965




11050

An output, very useful to study various anomalies, is stored in residfn_00.dat.
Namely, the columns “1.0_cpd” till “6.0_cpd” provide the modulus of the residuals of
the filtered numbers at the corresponding frequencies Q =1, 2, ... 6 cpd. Figure 1.1
represents these residuals for frequencies Q =1, 2 & 3 cpd, i.e. for the D, SD and TD
tidal species.

A. Residuals, D filtered numbers at 1 cpd 3o(lepd)

| ILI l”l” | |

68/20/L0
06/10/10
06/20/L0
16/10/10
16/20/L0
26/10/10
26/20/L0
Z6/1E/1
£6/20/L0
6/10/10 -
b6/20/L0
$6/10/10 -
S6/20/L0 &
96/10/10 <%=
6/20/L0 -
6/1€/T1
L6/T0/L0
86/10/10
86/20/L0
66/10/10
66/20/L0
00/10/10
00/20/L0
00/1€/21
10/20/L0
20/10/10

(=) e
dates in format: month/day/year

Figure 1.1. Cantley, modulus of the residuals of the filtered numbers and 3¢ threshold
levels, taken from \cant_out_b\residfn_00.dat.

The thick straight line is a threshold level. Its ordinate is 36(£2) where o(Q) is

the MSD, estimated by using the residuals at the frequency Q. The coefficient “3” is
the t-coefficient of Student, corresponding to very high confidential probability (the rule
3 sigma). As shown in Figure 1.1 we have too many residuals over the threshold level,
i.e. we have something systematically wrong in the analysis. Due to this we have to
look for a more sophisticated processing.

By the way, the threshold level 3c(€) can be replaced e.g. by 1.965(€2) or

3.506(Q) etc., by using the options
>E-Student-t: 1.96 or >E-Student-t: 3.5 etc.
Actually, we know beforehand that the SG data are subject to strong effect of the

air-pressure. Due to this, in the next Example 2, we shall apply a multi-channel analysis,
involving the air-pressure.
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Example 2. Multi-channel (MCH) analysis with air-pressure, data Cantley.

We shall skip the starlets * in the first 3 statements in cant6824.ini, i.e. we shall
restore the Basic CDATA in Table 1.1. Then we shall add to the Basic CDATA

New CDATA With effect
>Qut-hr-residuals: yes Output of hourly residuals in residall.dat

and run VAV in the same way as in Example 1, i.e. by choosing file Nr 2.

We shall get in \cant_out_a\ the new results in file analysis98.dat by keeping
the earlier results in analysis99.dat, arranged according to Table G.1.

Now we shall get 2 new rows in a_delta.dat, so that the results, shown in Table
1.3 become as those in Table 2.1.

Table 2.1. Cantley, sample of results by MCH analysis with air-pressure, amplitude &
factors and MSD o of & taken from a_delta.dat.

Variant |RUN_NR 5(01) 8 (K1) 5 (N2) d(M2) AIC

Simple |RUN 01 |1.16284 [1.14830 |1.20964 |1.20360

analysis 134965
MSD o(5) |%.00159 |%.00021 |+.00052 [+.00010

Multi- |RUN 02 [1.16556 |1.14789 |1.20934 |1.20349

channel +.00045 |+.00006 |%.00025 |+.00005 s1047

analysis MSD o (8) |=- - - -

We get an extremely strong improvement of the precision: nearly 4 times lower
MSD for the D tides and 2 times for the SD tides. I.e., our MCH analysis is O.K.
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Figure 2.1. New residuals (modulus) of the filtered numbers and threshold levels from
file residfn_00.dat after run 2 of VAV with MCH analysis including air-pressure data.

The improvement of the precision is also clearly demonstrated by Figure 2.1,
where the new residuals are plotted. The comparison with Figure 1.1 shows that we
have a considerably lower level of the residuals.
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It is very important that the residuals, exceeding the threshold levels, are
considerably fewer. Nevertheless, we have a curious accumulation of anomalous
residuals at several time intervals. We shall try to study the particular “swarm” of
residuals, indicated by arrows, somewhere between January and July 1991.

In the next Figure 2.2A the residuals of the D-filtered numbers around and in the
anomalous area are plotted. Now we use time in hours, in order to get exactly the place
of the anomaly. Figure 2.2B, obtained due to >Out-hr-residuals: yes, represents the
residuals of the hourly data, which clearly confirm the anomaly. By using these figures
we have got the start and the end of the anomaly, as they are indicated in Figure 2.2B.

A. Residuals of the D-filtered numbers at the anomalous area.
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C. Observed (??) data during 10 days at the start of the anomaly, file residall.dat
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Figure 2.2. Some data at the anomalous area, indicated in Figure 2.1 by arrows.

Example 3. Elimination of data intervals, data Cantley.

Figure 2.2C shows that there are not visual anomalies in the observed data. We
can let this mystery for further investigations and now continue the analysis without this
anomaly, i.e. without the data from time 80335" till 81775".

There is another anomaly at the start of the data, clearly seen in Figure 2.1B. We
have roughly estimated that it is better to abandon the data from the initial time 68816"
till time 72240".

The elimination of these data is done by adding to the Basic CDATA.
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New CDATA Comments

SE-T-interval: 68816 72240 |Eliminates the interval from the start till 72240

>E-T-interval: 80335 81775 |Eliminates the interval from 80335" till 81775"

For our experiments, it is better the New CDATA to replace the New CDATA
used before, i.e. the option >OUT-HR-residuals: yes, whose execution takes time.

Table 3.1 gives an extraction of the results in a_delta.dat after this elimination
of the data. Now we do not show the results from RUN 1, since they are no more
interesting.

Table 3.1. Cantley, elimination of 2 time intervals, sample of amplitude 6 factors and
MSD o of & taken from a_delta.dat.

RUN §(01) |8(K1) |[8(N2) |8 (M2) ﬂ;ﬁfﬁeisgg
RUN_02 1.16556(1.14789(1.20934(1.20349
MSD o (8) +.00045 |+.00006 | +.00025 [.00005 ez
RUN_03 1.16515(1.14781(1.20939|1.20340
MSD o (5) +.00040 |£.00005 |+.00020 [+.00004 72384

We have a reduction of the MSD by some 10% at the D tides and some 20% at
the SD tides. We would get still better results if we have more carefully studied the
whole data set and eliminate more data.

Notice that we use the term “eliminate” but actually the data are not eliminated
and they remain on their place. We merely exclude them from the processing.

Example 4. Automatic elimination of anomalies, data Cantley.

An easier way to look for, find and eliminate anomalous data is to replace the
New CDATA in Example 3 above by:

New CDATA Effect
>E-nm-iteratons: 5 | Will find too big residuals and eliminate them in 5 iterations

More explicitly, the effect of this option is the following. In iteration 0 we get
the residuals in residfn_00.dat, as shown in Figure 2.1. The residuals over the threshold
level indicate that the corresponding filtered intervals are “bad intervals”, i.e. they
comprise some anomalies.

In the next iteration 1 the analysis is applied on the data, from which the bad
intervals from residfn_00.dat, i.e. those, located by iteration 0, are excluded. Thus we
get new analysis results and new residuals, stored in residfn_01.dat. The next iteration
2 will eliminate the new bad intervals from residfn_01.dat and this will continue
according to the number of iterations chosen in >E-nm-iteratons: S.

After the last iteration, we get in badint_out.dat a list of all bad intervals. For
every one of them we have an indication at which iteration it has been eliminated.

Figure 4.1A is the same as Figure 2.1A but a different vertical scale is used.
Figure 4.1B shows the effect of iteration 1. We have namely eliminated considerable
number of the anomalies, detected in iteration 0. As a result, according to the threshold
level, the level of the noise is reduced some 1.5 times.
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Figure 4.1. Residuals (modulus) and threshold level 3o at 1 cpd, obtained by iteration 0
and iteration 1.

This reduction of the noise is not yet a guarantee for better results. It is important
to check the precision of the analysis results, which may be not improved. It is even
possible the precision to be badly worsened.

The analysis results are demonstrated in Table 4.1.

Iteration 2 has eliminated 12.1% of the data. For normal data, the reduction of

their quantity by 12.1% should increase the MSD o(3) at least v100/87.9 = 1.07
times. Here we have a decrease of o(8) for Q1 from 0.00045 to 0.00029. Such an effect

would be obtained if we disposed by (45/29)* = 2.4 times longer series of data. It is
more than obvious that this is a very useful procedure.

Table 4.1. Cantley, elimination in 5 iterations, amplitude & factors and MSD o of &
taken from a_delta.dat (the earlier results in a_delta.dat are not shown).

RUN/ Number |Elimi-
iteration 3 (Q1) 8 (K1) 8 (N2) 8 (M2) Data nated %
RUN 04/00 |1.16556|1.14789|1.20934]1.20349
MSD o (5) 0.00045|0.00006|0.00025|0.00005| 7232 0.0%
RUN _04/01 |1.16531|1.14790|1.20930|1.20344
MSD o (5) 0.00033|0.00004 |0.00018|0.00003| 2144 6.6%
RUN 04/02 |1.16554|1.14787]1.20925|1.20347
MSD o (3) 0.00029|0.00004 |0.00017 |0.00003| ©7920 12.1%
RUN_04/03 | 1.16547|1.14785|1.20918|1.20349
MSD o (5) 0.00028 | 0.00004 |0.00016|0.00003| ©3°68 15.1%
RUN_04/04 |1.16536|1.14784|1.20915|1.20350
MSD o (5) 0.00027|0.00004 | 0.00016|0.00003| ©4272 16.8%
RUN 04/05 |1.16526|1.14783|1.20914[1.20350
MSD o () 0.00027|0.00004 | 0.00016|0.00003| ©3000 17.7%
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Example 5. Elimination of one and the same data, data Cantley.

It is reasonable, among all iterations in Example 4, to choose iteration 2 because
(i) we have less important reduction of the MSD after iteration 2 and (ii) in principle, it
is better not to go very far with the quantity of the eliminated data. In order to use in
further analyses one and the same eliminated data, without the execution of the
iterations, i.e. without >E-nm-iterations:, we have first to store

| The output file badint_out.dat | as a file named badint.dat |

Then we have to use, instead of >E-nm-iterations: 5

New CDATA Effect
>E-badint.dat: 2 Will provide the same results as at iteration 2

Table 5.1. Cantley, elimination by using badint.dat, amplitude & factors and MSD ¢ of
d taken from the last two rows of a_delta.dat.

RUN Number |Elimi-
4 (Q1) 0 (K1) 4 (N2) 4 (M2) data nated %

RUN_05 1.16554(1.14787|1.20925|1.20347
67920 12.1%

MSD o (d) 0.00029|0.00004|0.00017|0.00003

The effect of >E-badint.dat: 2 is that VAV will take those bad intervals from
the new file badint.dat, which have been eliminated when iteration 2 has been
executed. Then a new run of VAV will produce the results in Table 5.1, which are
identical to RUN_04/02 in Table 4.1 above.

The idea is that thus we have prepared “cleaned” data, ready for further
investigation. Notice, that in all these procedures “elimination” means only “not use at
the moment for the processing while the original data remain intact”.

The “elimination” introduces considerable quantity of gaps. Nevertheless,
despite the superstitious fears of many scientists from the gaps, just the gaps introduced
here provided a considerable improvement of the precision.

Example 6. Another analysis in 5 iterations, data Strasbourg
The Basic CDATA for Strasbourg are:

*>D-FORMAT: unf
>D-NM-INPUT-CHANNELS: 4
>D-MAX-NM-DATA: 115800
>D-TIDAL-CHANNEL: 1
>MCH-MODEL: 1
>MCH-CHANNEL: 2

>ST-LONG-E: 7.684
>ST-LATIT-N: 48.6223
>ST-ALTIT-METERS: 180.0
>ST-GRAV-GALS: 981.
>ST-NAME: STATION 0306 STRASBOURG ...
>ST-NAME: Both series of data ...
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The experiment with the MCH analysis in Cantley is so convincing, that we
need not here to make more experiments, i.e. we can directly use the MCH options in
the basic CDATA. We shall also directly apply the automatic elimination of the data,
i.e. we shall use

New CDATA
>E-nm-iteratons: 5

Thus we get the first analysis results in \stra_out_a\analysis99.dat. A sample of
these results is shown in Table 6.1.

Table 6.1. Strasbourg, MCH analysis with elimination in 5 iterations: amplitude o
factors and MSD o of & taken from \stra_out_b\a_delta.dat.

Numb Elim.
RUN_NR 5(Q1) §(K1) |8(N2) 5 (M2) dataer Dat: .
RUN_01/00|1.14608 |1.13576|1.17200 |1.18552
MSD o(5) |£.00055 |£.00007|+.00030 |%.00006| 119824 0.0%
RUN_01/01|1.14637 |1.13592|1.17236 |1.18571
MSD o(5) |£.00032 |%.00004|+.00020 |*.00004| 107424 7.3%
RUN_01/02[1.14632 |1.13605|1.17248 |1.18580
MSD o(3) |+.00026 |£.00004|+.00017 |+.00003| 29552 | 14.0%
RUN_01/03|1.14639 |1.13608|1.17254 |1.18581
MSD o(5) |£.00025 |£.00003|£.00017 |+.00003| 24128 | 18.7%
RUN_01/04|1.14650 |1.13611|1.17257 |1.18583
MSD o(5) |+.00024 |£.00003|+.00016 |%.00003| 21392 | 21.1%
RUN_01/05|1.14652 |1.13610|1.17264 |1.18583
MSD o(5) |+.00024 |£.00003|+.00016 |%.00003| 20336 | 22.0%

Iteration 2 reduces o(8) for Q1 from 0.00055 to 0.00026. Such an improvement

of the precision can be obtained, theoretically, through an increase of the number of the
data by (55/26)* = 4.5 times, i.e. if the observations have been obtained during more
than 50 years! We have got this improvement in the opposite way — through the
decreasing the number of the data by 14.0% and introducing a number of gaps.

The classical spectral analysis needs continuous data without gaps. When the
data have gaps, they generate spikes. VAV uses MLS which is a more general and more
flexible method, able to take into account the existence of the gaps.

We may choose as optimum the variant RUN_01/02, i.e. elimination at iteration
2. At this stage already we get a considerable improvement of the precision, while in the
next iterations the improvement is not very important.

Then we have to transform

|File badint out.dat in file badint.dat |

If we accept permanently iteration 2, we have to replace >E-nm-iterations: 5 by

[>E-badint.dat: 2|

The next run of VAV will provide results, identical to RUN_01/02 in Table 6.1.
In such a way we have prepared cleaned data Strasbourg for other investigations.
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Example 7. Analysis of variances or factorial analysis, data Strasbourg.

The data Strasbourg are composed by two series, obtained by two different
instruments. These parts are separated by a big gap around the time point 7= 5400 days
(Figure 7.1). It is certainly interesting to check whether there are some systematic
differences between the two series. In another slang the task can be formulated as: “to
check whether the instrument used is a factor”. Such a problem can be solved through
the method analysis of variances, based on the famous ratio F’ of Fisher.

This example does will not offer surprising results with particular meaning. It is
only instructive, by showing that some conclusions need making statistical inferences
and that such inferences need MLS estimation of the precision, based on the sum or
squares of residuals.
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Figure 7.1. Strasbourg, drift, taken from file drift.dat.

Before starting a new investigation by VAV it is good

[to delete a_delta.dat and all files analysisNN.dat |

Then we shall analyse (i) the 1% series, before 7' =5400 days, (ii) the 2" series,
after T = 5400 days and (iii) both series together, i.e. all data.
This is done in 3 runs of VAV, by using consecutively:

Run_01, New CDATA for the

analysis of the 1% series Effect

>E-badint.dat: 2 Eliminates the data, determined at iteration 2

>E-t-interval 5400 7300 days |Eliminates the whole 2™ series, remains the 1* series

Run_02, New CDATA for the

; nd Effect
analysis of the 2 4 series c¢

>E-badint.dat: 2 Eliminates the data, determined at iteration 2

>E-t-interval 2000 5400 days |Eliminates the whole 1* series, remains the 2" series

Run_03, New CDATA for the

Eff
analysis of all data ect

>E-badint.dat: 2 Eliminates the data, determined at iteration 2

A sample of the results is given in Table 7.1.
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Table 7.1. Strasbourg, sample of results from a_delta.dat for separate analyses of two
series and analysis of both series together.

Series of data 3(01) 8 (K1) 5 (N2) 5 (M2) Number | Elim.
data data %
Run 1: 1%*series |[1.14578|1.13558 |1.17184 |1.18537
63504 | 19.2%
MSD & (d) +.00032|£.00004 |+.00023 |+.00004
RUN 2: 2™series |1.14742|1.13710 |1.17344 |1.18651
36048 3.2%
MSD o (J) +.00035|+.00005 [+.00021 |+.00004
RUN 3: all data |1.14632[1.13605 |1.17248 |1.18580
99552 | 14.0%
MSD o (d) +.00026|{%£.00004 |+.00017 |+.00003

In every analysisNN.dat we get, after the title:

frequency dependent sum of squares of residuals:
the sums of squares of the residuals (column SSQ) at the basic frequencies and the
corresponding degrees of freedom (column DFR).

We have recollected in Table 7.2 the SSQ from the 3 cases.

Table 7.2. Sum of squares of residuals S,(€2) and degrees of freedom d,(€2) for Run
j=1,2,3 of VAV and the ratio F(Q) of Fisher at frequency Q=1,2,...6 cpd.

Freq. First seies Second series All data

Q cpd 4@ | SO | 4@ | 5@ |4@ | 5@ | FO
1.0 2605 |27322.8 1461 7757.1 4107 42068.0 19.76
2.0 2625 |15939.6 1481 4635.5 4127 23088.6 23.89
3.0 2641 4507.0 1497 785.7 4143 5313.2 3.21
4.0 2641 2569.8 1497 332.0 4143 2911.5 2.78
5.0 2641 1808.0 1497 197.4 4143 2016.2 4.46
6.0 2641 1273.8 1497 142 .4 4143 1421.7 3.18

By using these data we compute, for every row, i.e. for every frequency Q the
ratio (criterion) of Fisher, whose expression in this case is

F(Q)= 5,75 75 | 1545 | Ghere s, = 5,(Q) andd, =d (@)
d,-d,—d, )/ \ d +d, S s

The values obtained are given in the last column of Table 7.2. All of them are
too big and we cane state that there are significant differences between the two series.

The SSQ and the DFR here used are also used to get a frequency dependent
estimation of the precision. Other programs for tidal analysis, e.g. ETERNA, which do
not use SSQ for frequency dependent estimation of the precision, are unable to use the
basic statistical criteria, like F of Fisher and ¢ of Student.
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Example 8. Determination of the LP (long period) tides, data Vienna

VAV does not use neither drift, obtained by filtration, e.g. by the filter of
Pertsev, nor residual drift. The drift is approximated by polynomials of low power,
independently for every time window, i.e. every filtered interval. Then the coefficients
of the polynomials are estimated through the application of MLS. Thus VAV provides
an estimated drift. The following Figures 8.1 & 8.2 give the estimated drift at the central
points of the filtered intervals (of every time window).

In Figure 8.1, since the LP tides are ignored, they remain in the drift. We can
clearly distinguish the main LP tides, namely: the lunar fortnightly MF, with period
close to 14 days, as well as the lunar monthly MM, with period close to 28 days.
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Figure 8.1. Vienna, drift estimated for every time window of 48" by using
approximation through polynomials of power k =2, WITHOUT determination of LP.

Figure 8.2 shows the drift in the case when the LP tides have been taken into
account. Due to this the LP tides, at least those, manifested in Figure 8.1, have
disappeared. More about the determination of the LP tides can be found in (Ducarme et
al., 2003).
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Figure 8.2. Vienna, drift estimated for every time window of 24" by using
approximation through polynomials of power k =0, WITH the determination of LP.

Now we shall show how we can estimate the LP tides in Vienna, i.e. what does it
mean “the LP tides have been taken into account”.

We shall use all_ini.inp, with CDATA shown in Table 8.1. There are included
the names of 6 LP tidal groups (see the input file groups.inp in \aaavav_03\), because
we shall deal with some or all of them.
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Table 8.1. New content of all_ini.inp, useful for the determination of the LP tides.

>D-origin-of-time: 1982 01 01 00
>out-compare-tide-name: SSA
>out-compare-tide-name: MSM
>out-compare-tide-name: MM
>out-compare-tide-name: MF
>out-compare-tide-name: MSTM
>out-compare-tide-name: MSQM

We shall use the Basic CDATA shown in Table 8.2.

Table 8.2. Basic CDATA for Vienna in vien0698.ini.

*>D-format: unf
>MCH-model: 1
>MCH-channel: 2
>D-nm-input-channels 4
>D-tidal-channel 1
>D-max-nm-data 35810
>ST-long-e: 16.3579
>ST-latit-n: 48.2493
>ST-altit-meters: 192.440
>ST-grav-gals: 981.

>St-name: STATION 0698 VIENNE ...
>St-name: 48.2493 N ...
>St-name: SUP-GWR C 025 ...

Here, as always, >D-format: unf is excluded by the starlet for the first run of
VAV.

Before everything, we have to clean the data and prepare the file badint.dat as
we have done with Cantley and Strasbourg. For this purpose we shall add

New Cdata
>E-NM-iterations: 5

Then we start VAV and choose file Nr 4, i.e. the data Vienna.

We shall see through the output files \vien_out_a\analysis99.dat\ and
\vien_out_b\a_delta.dat that the elimination procedure has not very strong effect.
Nevertheless, it seems reasonable to accept that iteration 2 has brought an improvement.

It is better now to skip the starlet in *>D-format: unf.

Our next step is to transform in \vien_out_b\

badint_out.dat — badint.dat

Afterwards we delete a_delta.dat, as well as all analysisNN.dat.
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Now we start the determination of the LP tides. We shall first use

New CDATA Some comments
>E-badint.dat: 2 Eliminates the bad intervals, obtained after iteration 2.
>F-t-window: 24 Makes the time window = 24"

Drift, approximated by a stepwise function, remaining

>F-k-drift-polyn: 0 constant during the selected time window, i.e. 24 h.

>GR-LP: 6 Chooses LP variant 6 in groups.dat, i.e. 6 LP groups

Then we run again VAV and we get in a_delta.dat the results, given in row
>GR-LP 6 in Table 8.3
Further we replace >GR-LP: 6 successively, one by one, by

>GR-LP: §
>GR-LP: 4
>GR-LP: 3
2
1

>GR-LP:
>GR-LP:

and run every time VAV, by choosing, of course, the data Vienna.

Thus we get the results in the remaining rows of Table 8.3 with 5,4, 3,2 & 1 LP
groups respectively. The arrows show how the groups in a given variant are shaped by
the tides in the groups from preceding variants. In particular, variant >GR-LP: 1, i.e.
one group, named MF, unifies all 6 groups from the previous variants, i.e. all LP tides.

Table 8.3. Vienna, determination of LP tides, data taken from a_delta.dat.

5(ssa) |5 (MsM) |8 (MM) 3 (MF) 5 (MSTM) | & (MSQM) aIC

>GR-LP 6 |1.522 |1.2658 [1.1428 |1.1370 |1.1286 |1.0720 | . .
MSD o(5) |+-199 [£.0934 |+.0152 |£.0054 |+.0188 |%.0695
>GR-LP 5 — |1.3123 [1.1429 |1.1369 |1.1288 [1.0719

61348
MSD o (8) +.0847 |+.0152 |+.0054 |*.0188 |+.0695
>GR-LP 4 — - 1.1482 [1.1369 [1.1288 [1.0728 | ..o
MSD o (8) +.0150 |+.0054 |+.0188 |%.0695
>GR-LP 3 — — 1.1481 |1.1370 |1.1252 “«— 61359
MSD o (5) +.0150 |+.0054 |[+.0182
>GR-LP 2 — — 1.1481 |1.1360 «— «— 61368
MSD o () +.0150 |+.0052
>GR-LP 1 —> —> —> 1.1372 < <

61365
MSD o () +.0049

In this kind of analyses with variants, in which one and the same set of data is
used, very helpful can be the AIC criterion of Akaike — a minimum value of AIC
indicates the most promising variant. The minimum here is at the first variant, with 6 LP
groups. In the same time we have: (i) the minimum is not much lower than the other
values and (ii) the MSD of the group MF in the last variant with one LP group is lower
by some 10% than in the case of 6 LP. In these controversial circumstances we may rely
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on the principle of parsimony, recommending the variants with lower number of
unknowns, in this case — with lower number of LP groups. Due to this, we would
recommend the last variant, unifying all LP tides in one group.

Example 9. Variation of the drift models, ocean tidal data San Juan.

We shall use the series of ocean tidal data from the station San Juan, covering an
interval of 16 years: 1.01.1985 —31.12.2000.
We shall use an all_ini.inp, shown in Table 9.1.

Table 9.1. Content of all_ini.inp.

>D-origin-of-time: 1985 01 01 00
>out-compare-tide-name: Q1
>out-compare-tide-name: K1
>out-compare-tide-name: N2
>out-compare-tide-name: M2
>out-compare-tide-name: MF

Now the epoch, chosen by >D-origin-of-time, coincides with the first date of
the data. Actually, this is the default case of VAV, so that this option is written here
only for information.

The Basic CDATA we have to use are given in Table 9.2.

Table 9.2. Basic CDATA in the control data file sanjuan.ini.

>D-format: Sanjuan
*>D-format: unf
>D-max-nm-data: 140300
>ST-long-e: -66.1167
>ST-latit-n: 18.4600
>ST-altit-meters: 0
>ST-grav-gals: 0
>ST-component: ocean
>ST-name: San Juan ...

Here are the following particularities.

(i) The data are in a very particular format for which VAV has an appropriate
subroutine. It is called by using >D-format: Sanjuan. After the 1* run, this statement
may be replaced by >D-format: unf.

(ii) We have only one channel with tidal data. Therefore we cannot use an MCH
analysis and we do not need to use >D-nm-input-channels and >D-tidal-channel .

(iii) We have to use >ST-component: ocean, which indicates the type of the
data. For this kind of data the theoretical amplitudes and phases are computed for the
equilibrium ocean tides. In the earlier examples with gravity data we have not used
>ST-component:, because the default option is prepared namely for gravity data.
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Now we shall try to find an optimum or at least a reliable model of the drift. For
this purpose we shall run 5 times VAV, by choosing the San Juan data, with the 5
variants of the New CDATA, given in Table 9.3.

Table 9.3. Five variants of New CDATA, where AT is the time window, k is power of
the drift polynomials and the presence of MF means that one LP tidal group MF (see
example 8) is included in the analysis.

Variants New CDATA Parameters chosen
>GR-D-SD: 50
Variant 1 | >F-T-window: 48 AT =48", k=0

>F-Kk-drift-polyn: 0
>GR-D-SD: 50
Variant 2 | >F-T-window: 48 AT =48", k=1
>F-k-drift-polyn: 1
>GR-D-SD: 50
Variant 3 | >F-T-window: 48 AT =48", k=2
>F-k-drift-polyn: 2
>GR-D-SD: 50
Variant 4 |>F-T-window: 48
>F-k-drift-polyn: 0
>GR-LP: 1
>GR-D-SD: 50
Variant 5 | >F-T-window: 24
>F-k-drift-polyn: 0
>GR-LP: 1

AT =48", k=0,MF

AT =24" k=0,MF

A sample of the results from the use of these variants is given in Table 9.4.

Table 9.4. Sample of five variants of analysis results, extracted from the a_delta.dat.

Variants |01 K1 N2 M2 MF AIC
1.19485|1.01972|0.86822|0.70380

Variant 1 |+.01743|+.00223|+.00453 |+.00083 179213
1.19307|1.02046|0.86940|0.70406

Variant 2 |+.01699|+.00217 |+.00447 |+.00082 176022
1.19246|1.02024|0.86928|0.70408

Variant 3 |+.01660|+.00221 |+.00448 |+.00083 176229
1.19458|1.01971|0.86805|0.70366|0.76055

Variant 4 |+.01737|+.00222|+.00453 |+.00083 |+.09314 | 179042

1.19310/1.01971]0.86905|0.70384|0.78523
Variant 5 |+.01428|+.00194|+.00338|+.00064|%.07882

In all variants >GR-D-SD: 50 makes use of 50 D and SD tidal groups (variant
50 in groups.inp). In variants 1 through 4 we use a time window of 48 hours, i.e. the
drift is approximated by some polynomials, separately in intervals of 48 hours. In
variants 1, 2 & 3 we raise the power of the polynomials from 0 to 2. In variant 4 the
power is reduced to 0, i.e. the drift is approximated by a stepwise function, remaining a
constant during 48 hours. Instead, we include an LP tidal group. In the last variant 5 we
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have a shorter time window of 24 hours and one LP group as in variant 4. This is just
the variant, used in the previous Example 8.

The variants 1 through 4 can be compared through the AIC value in Table 9.4.
Its lowest value is at variant 2, i.e. AT =48 and k =1 should be considered as most
reliable. These four variants cannot be compared through AIC with the last variant 5
due to the use of different time windows, which means different number of filtered
quantities. In this case we can deal with the MSD. Since they are clearly lower for
variant 5 we can decide that this is the best variant for the analysis of these ocean data.

Example 10. Variation of the grouping, data San Juan.

By taking into account the results in Example 9 we shall use

New CDATA
>F-T-window: 24
>F-Kk-drift-polyn: 0
>GR-LP: 1

This is the definition of the drift model in the last variant 5 in Example 9.

Further we shall add to the New CDATA consecutively, one by one, >GR-D-
SD: 63, >GR-D-SD: 50, >GR-D-SD: 32,>GR-D-SD: 30, >GR-D-SD: 14, >GR-D-
SD: 13, >GR-D-SD: 11, every time running VAV.

Here 63, 50 etc. are conventional numbers of a variant of grouping in
groups.inp, but in these cases these numbers are also equal to the number of the groups
in the corresponding variant.

Table 10.1 shows a sample of the results of this series of analyses.

Table 10.1. San Juan, sample of analysis results, taken from a_delta.dat and obtained
by using different variants of grouping.

Variant used §(Q1) | 8(KI) S(N2) S(M2) | S(MF) | AIC

>oR-D-SD: 63 |1'02070 |1 00005 |4 00342 |%.00065 |.07971 | 335749
>6R-D-8D: 50 |107aza |1l0010a |4.00338 |¢.00064 |&.07a82 | 333053
>GR-D-SD: 32 |1'01ae5 |1 00106 | 00360 |%.00065 |&.07714 | 339302
>eR-D-sD: 30 |1'02ei% |1 0oi0e |4 00361 |%.00069 | 07693 | 339341
>eR-D-sD: 14 |1'02200 |1 0ot0s |4 00358 |2.00070 |i.07742 | 340298
>6R-D-SD: 13 |1'67a20 |1 00005 |4 00358 |%.00070 | 07012 | 341663
>er-p-sp: 11 |1 Y03 1100100 |4 00380 |4 00070 |&.07944 | 342002

There are not essential differences in the MSD. However, the lowest value of
AIC shows as a most reliable the variant 50 with 50 D-SD tidal groups. Very closely to
it is situated the variant with 63 tidal groups. These are variants with a very detailed
separation, which are seldom used in the Earth tide domain.
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Example 11. Prediction of the tidal signal through analysis, data San Juan.

Here we shall analyze a short interval of 2 months: from 0"1.01.1986 till
231 28.02.1986. By the same run of VAV we shall make a prediction of the tidal signal
for a larger remote interval, namely for the interval of 1 year from 0",1.01.2000 till
23",31.12.2000.

For this purpose we shall use

New CDATA Comments
>F-T-window: 24 Chooses time window 24 hours
>F-k-drift-polyn: 0 Drift as stepwise function
>GR-LP 1 Determines the LP tides in 1 group

>E-T-interval: 1985110 1985 12 31 23 | After the elimination for analysis remain

>E-T-interval : 19863 10 2001 01 01 00 | the data 0",1.01.1986+23",28.02.1986

>OUT-predict: 2000 110 2000 12 31 23 P]fedwtion to be n}]ade in the interval
0".1.01.2000 = 23".31.12.2000

In Example 3 we have used >E-T-interval: T; T, where T; & T are in hours
and in Example 7 >E-T-interval: T; T,days, where due to the presence of the word
“days” Ty & T are in days.

A third format of this option is used here. Namely, when >E-T-interval: is
followed by 8 numbers they are perceived as two dates, each date represented by year,
month, day & hour. Thus the effect of

[S>E-T-interval 1985110 1985123123 |

is the elimination of the interval from 0"1.01.1985 till 23"31.12.1985, i.e. from the
beginning till the second date.

150 Observed ocean tidal data, first 10 days of the predicted interval (vav_out.dat)
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Figure 11.1. San Juan, ocean data; sample of observed data and predicted tidal signal
(column “pred_sig” in signal.dat) during the first 10 days of the predicted interval.

Now we cannot use a very detailed separation of the tidal groups, because we
analyse a very short part of the data. Therefore we do not use here >GR-D-SD: 50 as
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well as any other variant of grouping. In such a case VAV chooses a default variant of
grouping, corresponding to the data length.

After running VAV on the data San Juan we get the predicted signal for every
hour in the chosen interval, displayed in signal.dat. Figures 11.1 and 11.2 show a
comparison between the predicted signal and the corresponding observed data. The
observed data are plotted by using vav_out.dat.

170 Observed ocean tidal data, last 10 days of the predicted interval (vav_out.dat)

40 Predicted tidal signal, last 10 days of the predicted interval (signal.dat)
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Figure 11.2. San Juan, ocean data; sample of observed data and predicted tidal signal
(column “pred_sig” in signal.dat) during the last 10 days of the predicted interval.

Notice, that we have a prediction of the tidal signal, without the drift. Due to this
we have a difference in the general level of the observed and predicted curves.

Example 12. Study and prediction of the zero-line (mean sea level), data San
Juan.

Figure 12.1 shows the estimated drift of the data San Juan, with one point per
day, over the whole data interval of 16 years. It is a rather complicated curve, but one
thing is obvious — we have an annual component, most likely of meteorological origin.
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Figure 12.1. Estimated drift curve of the data San Juan (column “drift_obs™ in drift.dat,
produced by Example 10, variant >GR-D-SD: 50).
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The Z-options of VAV allow to investigate this curve and approximate it, so that
we can get a smoothed zero line of the data. If this line involves a constant term, the
latter can be accepted as the mean sea level of the data.

The parameters of the zero line, including the constant term, representing the
mean sea level, are included as unknowns of the global analysis, in parallel with the
tidal unknowns. Thus we get these parameters correctly estimated by MLS, free of the
effect of the tidal signal, with a correct estimation of the precision.

Now we shall use

New CDATA Comments
>F-T-window: 24 Chooses time window of 24 hours
>F-k-drift-polyn: 0 Drift as stepwise function
>GR-LP: 1 Determines the LP tides in one tidal group
>GR-D-SD: 50 Variant 50 of D-SD tidal groups
>7-k-degree-polyn: 0 Polynomial of power 0 = mean sea level
>7-freq: 1 cpy Annual component 1 cycle/year
>7-freq: 2 cpy Annual component 2 cycles/year

The effect of the New CDATA is that the equations of the analysis include a
general model of the estimated drift in Figure 12.1, composed by unknown constant and
two annual periodic components with frequencies 1 and 2 cpy (cycles/year). The
unknown constant will represent the mean sea level, obtained by taking into account,
i.e. by eliminating, the tidal components of the data, as well as the annual components.

The result from the analysis is represented on Figure 12.2, drawn by using the
file drift.dat. The curve denoted as “constant + annual components” is approximation
of the drift curve by all components (column “drift adj” in drift.dat). The curve
denoted “constant term” represents only the polynomial component of power 0 (column
“polynom” in drift.dat), which is actually the estimated mean sea level. The grey line
representing the drift is taken from column “drift_obs” in drift.dat.

The file drift.dat should be kept under, say, the name drift_mem.dat in order to
draw later the drift curve in Figure 12.4.

Adjusted drift (drift_adj) = Observed drift (drift_obs) Constant term =

150 = constant + annual components - mean sea level
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Figure 12.2. Approximation of the drift by constant and annual components.

A careful study can show us that we have some points of the curve in Figure
12.2, where the drift is changing its general behavior. Hence, a better approximation can
be obtained by partition the data in several segments and experiment an approximation
by polynomials, different in the different segments.
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This can be done by using

New CDATA Comments
>F-T-window: 24 Chooses time window of 24 hours
>F-k-drift-polyn: 0 Drift as stepwise function
>GR-LP 1 Determines the LP tides in one tidal group
>GR-D-SD: 50 Variant 50 of D-SD tidal groups
>7-k-degree-polyn: 3 Polynomials of power 3 will be applied

>7-~-segm-time: 1989 5 20 0 | The data are partitioned in 4 segments by the
>7-segm-time: 1994 11 10 0 | selected dates and in every segment the drift
>7-segm-time: 1997 10 15 0 | is approximated by polynomial of power 3
>7Z-freq: 1 cpy The same annual components as those,
>7-freq: 2 cpy used above

The result is represented in Figure 12.3. We have certainly a better
approximation but we loose the possibility to derive a constant mean sea level.

Adjusted drift (drift_adj) = Observed drift (drift_obs) Polynomial
150 - polynomial + annual components / - component
140 : '
5130
é 120
110
100 T T T T T T T T T T T T T T T 1
r I P I FFLFEEEFEEGEG G
£ & 5 5 5 8 5 5 5 8 8 &5 85 & & 8
e} [ o0 0 e} O Nel O Nel O O el O o O (=] S
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Figure 12.3. Approximation of the drift by polynomials of power 3 in 4 separate
segments and annual components of 1 & 2 cpy.

The curve “polynomial + annual components” is taken from column “drift_adj”
and “polynomial component” from column “polynom” in drift.dat.

It is of course interesting to predict the zero line. For this purpose it is not
convenient to use the sophisticated approximation in Figure 12.3, because we have not
the guarantee that the changes will go in the same direction. It is more reasonable to
remain at the simple case in Figure 12.2, with the hope that the mean constant level and
the annual components will keep their behavior.

Now we have to return to the New CDATA as those, used for Figure 12.1, with
some additional options, namely we have to use

New CDATA Comments
>F-T-window: 24 Chooses time window of 24 hours
>F-k-drift-polyn: 0 Drift as stepwise function
>GR-LP 1 Determines the LP tides, 1 tidal group
>7-k-degree-polyn: 0 Polynomial power 0 = mean sea level
>7-freq: 1 cpy Annual component 1 cycle/year
>7-freq: 2 cpy Annual component 2 cycles/year
>E-t-int 1995110 2002110 Analysis of the data till the end of 1994
>OQUT-predict: 1995110 2000 12 31 23 | Prediction till the end of 2000
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The result of the prediction of the zero line is shown by Figure 12.4.
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Figure 12.4. San Juan, observed drift (grey line), and predicted zero-line (thick line),
obtained by using 10 years data from 1.01.1985 till 31.12.1994.

The observed drift is in column “drift” in drift_mem.dat, kept earlier, and the
predicted zero-line — in new column “pre_zero_line” in signal.dat.

Through this application of VAV we get now in the column “pred_sig” of
signal.dat predicted tidal data = predicted tidal signal + predicted zero line, i.e.
predicted tidal signal + predicted drift. A sample of the result is shown by Figure 12.5,
drawn by using the file vav_out.dat for the existing data and predicted data in column
“pred_sig” in signal.dat.
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Figure 12.5. San Juan, predicted tidal data = predicted signal + predicted zero-line.

Notice, that the inclusion of the predicted drift suppress the systematic
difference in the general level between observed and predicted data in Figures 11.1 &
11.2.
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Example 13. Determination of high frequency tides, data San Juan

Under high frequency (HF) tides we shall understand tides or whatever waves,
with frequencies higher than the frequencies of the SD tides. Theoretically, most
important HF are the TD (third-diurnal) tides with frequencies near 3 cpd and the QD
(quarter-diurnal) tides with frequencies near 4 cpd.

The development of Tamura provides 1198 tides, including a set of TD and QD
tides with frequencies till 4 cpd. All of them have theoretical amplitudes and phases and
we can define and look for their parameters 6 and « .

Our table of this development in tamura.inp includes additional HF tides S4,
S5, ... S11 with frequencies 4, 5, ... 11 cpd respectively. They are harmonics of the
main meteorological tide S1 whose period is exactly 24 hours. This meteorological S1
does not exactly coincide with the theoretical S1 in tamura.inp .

The file tamura.inp also includes additional tides M5, M6, ... M11 with
frequencies 5, 6, ... 11 cpld (cycles/lunar day). They are harmonics of the D lunar tide
with period 1 lunar day, denoted as M1X in tamura.inp.

Traditionally, we use the acronyms D, SD, TD and QD for sets of tides, which
are around 1, 2, 3 & 4 cpd or cpld. The use of HF, which may go till 11 cpd (even much
further for minutes data), needs new acronyms. It is convenient a set of tides, which are
around K cpld and/or K cpd, to be denoted by DK. Thus D, SD, TD & QD may be
replaced by D1, D2, D3 & D4 respectively. Practically more important is that in such a
way the sets M5, S5, ... M11, S11 can be considered as 7 sets of tides denoted by D5,
... D11 respectively.

The default case of filter’s frequencies in VAV is Q= 1,2, ... 6 cpd. This set

allows the determination of D1 through D6, but not the higher frequencies. If we want
also to determine the D7 through D11 waves, we need to raise the filter frequencies till
11 cpd.

The frequencies and the phases of the additional tides S4, M5, S5, ... M11, S11
are defined like the other tides through the argument coefficients of Doodson. However,
they have not theoretical amplitudes and we cannot define the amplitude factor &.
Hence we cannot deal with the unknowns & and n (see Section B). Instead, for tides of

such kind, VAV uses as unknowns the observed amplitudes and phases. Everyone of the
tides is considered as a group, composed by a single tide and at the output we get an
amplitude and a phase, but not the usual § and k. This is possible because S4, M5, S5,
... M11, S11 have considerably different frequencies, allowing their separation.

We shall determine all HF tides, including S4, M5, S5, ... M11, S11 in the
ocean data of San Juan by using

New CDATA Comments
>GR-D-SD: 50
>F-T-window: 24 Options, which remain the same as before.
>F-k-drift-polyn: 0
>GR-LP: 1
>GR-TD: 7 Determines TD separated in 7 tidal groups
>GR-QD: 7 Determines QD separated in 7 tidal groups, including S4
>F-Highest-freq: 11 cpd VAV will use the filter fr.equ‘encies 1,2, .. 11 cpd which

makes possible the determination of all HF waves, till D11

>GR-HF: 2 Includes in the analysis the tides M5, S5, ... M11, S11
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The effect of >GR-TD: 7 is that the TD tides are separated in 7 groups. One of
them is the group S3, composed by a single, very small theoretical tide S3. The result
we shall obtain about S3 is actually for a meteorological tide S3 with period 8 hours.

The effect of >GR-QD: 7 is that the QD tides are separated in 7 groups. One of
them is the group S4, composed by the added tide S4, which is actually a
meteorological tide with period 6 hours.

The results in analysisNN.dat about TD and QD are, as usually, & and x about
the selected tidal groups and amplitudes of the main tide in every group. An exception
is S4, having only amplitude.

In Table 13.1 the results about the TD tides are given, but only the amplitudes,
which are more interesting in the case of ocean data.

The names of groups MO3, MK3 and SK3 are the names of the shallow water
waves whose frequencies enter in the corresponding frequency interval of the group.
The main tides in tamura.inp with these names do not coincide exactly with the actual
MO3, MK3 and SK3.

Table 13.1. San Juan, TD (third-diurnal) tides determined when the option >GR-TD: 7
is used.

Frequency interval | Number of | Name | Amplitude of | MSD of the
of the tidal group tides in of the the main tide | amplitude
in cpd the group group in cm in cm
2.75324 - 2.86971 36 MO3T 0.0177 +0.0067
2.89264 - 2.89826 6 M3x 0.0219 +0.0070
2.89841 - 2.90389 7 M3 0.0296 +0.0071
2.92711 - 2.94033 14 MK3T 0.0499 +0.0061
2.96599 - 2.97191 5 S3X 0.0009 +0.0064
3.00000 - 3.00000 1 s3 0.0780 +0.0070
3.00305 - 3.08125 13 SK3T 0.0007 +0.0008

The results (amplitudes only) about the QD tides are given in Table 13.2. All
groups have the names of shallow water waves, used in the same way as in the case of
the TD groups.

Table 13.2. San Juan, QD (quarter-diurnal) tides determined when >GR-QD: 7 is used.

Frequency interval | Number of | Name | Amplitude of | MSD of the

of the tidal group tides in of the the main tide | amplitude
in cpd the group | group in cm in cm
3.79196 - 3.79196 1 N4 0.0203 0.0059
3.79682 - 3.79682 1 3Ms4 0.0096 0.0059
3.82826 - 3.83311 2 MN4 0.0726 0.0058
3.86440 - 3.86455 2 M4 0.1609 0.0058
3.90084 - 3.90146 2 KN4 0.0049 0.0026
3.93775 - 3.93790 2 MK4 0.0203 0.0054
4.00000 - 4.00000 1 sS4 0.0622 0.0058
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Further, due to the options >F-Highest-freq: 11 cpd and >GR-HF: 2 we get the
amplitudes of the D5, D6, ... D11 tides. The results are shown in Table 13.3.

One of the general results is that the meteorological S5, S6, S7 & S9 have
significant amplitudes. Another one is that the even lunar harmonics M6 and M8 are
clearly significant, as well as M4 in Table 13.2. It is interesting that the amplitude of
M4 is higher than the amplitude of M3, while the theoretical amplitude of M4 is
considerably lower than M3. Also, if M6 and M8 were derived from the tidal potential,
they would have considerably lower theoretical amplitudes than M3.

All odd lunar harmonics, with the exception of M3 in Table 13.1 and a doubtful
exception of M5, are not significant. Not significant are also the highest frequencies 9,
10 and 11 cpd, may be because they are very close to the Nyquist frequency of 12 cpd.

Table 13.3. San Juan, high frequency tides in the frequency domains DS, D6,...D11,
determined when the options >F-Highest-freq: 11 and >GR-HF: 2 are used.

Frequency | Tidal | Amplitude | MSD of | Significant
incpd | Name | Incm Amplitude | or not sign.
4.83068 M5 0.0085 0.0043 Yes ?
5.00000 s5 0.0811 0.0043 Yes
5.79682 M6 0.1264 0.0042 Yes
6.00000 S6 0.0410 0.0042 Yes
6.76296 M7 0.0023 0.0035 No
7.00000 s7 0.0342 0.0035 Yes
7.72909 M8 0.0474 0.0035 Yes
8.00000 s8 0.0048 0.0035 No
8.69523 M9 0.0030 0.0033 No
9.00000 s9 0.0308 0.0033 Yes
9.66137 M10 0.0025 0.0032 No
10.00000 s10 0.0029 0.0032 No
10.62750 M11 0.0044 0.0032 No
11.00000 si1 0.0047 0.0031 No

Example 14. Shallow water tides, data San Juan.

Shallow water (ShW) tides can be defined by their frequencies but they have not
theoretical amplitudes. Due to this VAV can deal with them in a way, similar to S4, M5,
S5, ... in Example 13. Le., each ShW tide shape a group of one tide and VAV estimates
its amplitude and phase.

The user can define a set of shallow water (ShW) tides by the input file
shallow.inp in \aaavav_03\. A sample of shallow.inp, prepared for this example, is
given in Table 14.1. After a run of VAV using shallow.inp, we get a list of the ShW
tides in the file shallow_out.inp, also in \aaavav_03\.
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Table 14.1. Sample of the content of shallow.inp; the complete file contains 107 ShW
tides.

SD or D2 shallow water tides
0Q2= 0ol + 01
MNS2= M2+N2-S2
OoP2= 0l + P1
MKS2= M2+K2-S2
IDA2= 2 1 -2 1 00
KJ2= K1l + J1
2SM2= 2*82 - M2

TD or D3 shallow water tides
NO3= N2 + 01
MO3= M2 + 01
M3= 3*M1X
NK3= N2 + K1
S03= 82 + 01
MK3= M2 + K1
SP3= S2 + P1
S§3= 3*S1
SK3= S2 + K1

D6 shallow water tides

2NM6= 2*N2 + M2
ST12= 0.2387380574 cph
2MNG6= 2*M2 + N2
ST13= 0.2402502093 cph
ST41= 0.2413060429 cph
Mé6= 3*M2
MSN6= M2 + S2 + N2
MKN6= M2 + K2 + N2
ST42= 0.2441279756 cph
2MS6= 2*M2 + S2
2MK6= 2*M2 + K2
NSK6= N2 + S2 + K2
2SM6= 2%*S2 + M2
MSK6= M2 + S2 + K2
S6= 3*52

.............................

In every line we have at the 1% place the name of the ShW tide (can be arbitrary
name of 1 to 4 letters), followed without a blank by “=". Then we have the definition of
the corresponding tide in one of the following 3 ways.

(i) As a linear combination of some D and SD tides.

Such are most of the cases in Table 14.1, as well as in shallow.inp. It is possible
to use combinations of one to 5 tides, whose names exist in our tamura.inp. The star in
these expressions denotes multiplication; the blanks after “=" are ignored. When given
ShW is defined in this way, VAV takes the argument coefficients of the indicated D and
SD tides, computes the corresponding combinations and thus the argument coefficients
of the new ShW tide are obtained.
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One particular moment is the D tide M1X. This is a small tide with Doodson
argument number 155.555, i.e. this is an exactly lunar D tide. Thus the tides defined as
K*M1X are exactly lunar harmonics. Our shallow.inp includes all M tides, used in
Example 13, defined as 3*M1X, 4*M1X, ... 11*M1X.

Another particularity is the use of S1. In the development of Tamura S1 is the
tide 164.556 which is slightly different from the meteorological wave with frequency
just 1 cpd. In the expressions above S1 is considered as 164.555 whose frequency is just
1 cpd, so that the waves defined as K*S1 are exactly meteorological harmonics. Our
shallow.inp includes all S tides, used in Example 13, defined as 3*S1, 4*S1, ... 11*S1

(ii) By the argument coefficients.
E.g. LDA2=21-2 1 0 0 defines a wave with number of Doodson 263.655.
(iii) Directly by the frequency of the ShW tide.

E.g. ST12= 0.2387380574 cph defines ST12 as a wave with frequency
0.2387380574 cycles/hour. It is possible to replace “cph” by “cpd” or “deg/hr” when the
frequency is given in cycles per day or degrees/hour respectively.

In order to introduce in the analysis the ShW tides from shallow.inp we shall

use
New CDATA Comments

>GR-D-SD: 50

>F-T-window: 24 Options, which remain the same as before.

>F-k-drift-polyn: 0

>GR-LP: 1

>GR-TD: 0 The zeros exclude from the analysis these tidal groups,

>GR-QD: 0 used in Example 13, because we shall use ShW tides in

>GR-HF: 0 the same frequency domains.

>F-Highest-freq: 11 cpd | Same as before

>GR-Shallow: 3 11 Will include in the analysis the ShW tides in the frequency
domains D3, D4, ... D11, i.e. all of them, without D2=SD.

The option >GR-Shallow: 3 11 includes in the analysis 87 of the tides, defined
by our file shallow.inp. This increases the number of unknowns by 174, namely 87
amplitudes and 87 phases.
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Figure 14.1. Shallow water tides in D3 frequency domain; estimated amplitudes from
file all_tides.dat, column “amplitude”.
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Figure 14.2. Shallow water tides in D6 frequency domain; estimated amplitudes from
file all_tides.dat, column “amplitude”.
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Figure 14.3. Shallow water tides in D8 frequency domain; estimated amplitudes from
file all_tides.dat, column “amplitude”.

After running the program with this input and selecting the data San Juan, we get
the results in the corresponding analysisNN.dat, as well as in all_tides.dat. The ShW
tides in analysisNN.dat are represented only by amplitudes.

The detailed output in all_tides.dat provides the observed amplitudes and
phases. The phases are relative to the meridian of the observation point and the time
origin used. It is given in the head of the output data. We are ready to introduce other
definition of the phases under requests of the users.

A sample of the output in all_tides.dat is represented by figures 14.1, 14.2 &
14.3.

In a next run of VAV we may get synthesized or predicted signal of the ShW
tides by using all_tides.dat. E.g. the D3 signal in January 1985 will be obtained
through:

New CDATA Comments

>0QUT-predict 1985 01 01 00 1985 01 31 00 | The signal will be created for January, 1985

. Input of the D3 amplitude and phases from
>W-all- : d . .
W-all-tides: 3 3 cp all tides.dat and creating the D3 signal.

The results are now displayed in analysisNN.dat in a table under the head
Predicted signal by using file all_tides.dat

Figure 14.4 represents this output.
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Figure 14.4. Predicted ShW signal in D3 domain; option >W-all-tides: 3 3 cpd.

The next figures 14.5, 14.6 & 14.7 are obtained through the consecutive

replacement of >W-all-tides: 3 3 cpd by the options, shown in the figures.
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Figure 14.5. Predicted ShW signal in D6 domain; option >W-all-tides: 6 6 cpd.
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Figure 14.6. Predicted ShW signal in D8 domain; option >W-all-tides: 8 8 cpd.
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Figure 14.7. Predicted ShW signal in all HF domains D3, D4, ...

tides: 3 11 cpd.
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By the way, if we have used >W-all-tides: 0 11 cpd, we would get the
predicted curve of the total tidal signal.

Example 15. Looking for new waves, data San Juan.

Under new waves or new frequencies we understand waves with frequencies,
which do not exist in the development of the tide-generating potential. In this sense they
can also be called non-tidal waves, respectively non-tidal frequencies. According to this
definition, non-tidal are all waves, which have been determined by Example 13 and the
ShW in Example 14. The advantage of the option used here with respect to the
techniques, used in the previous example are: (i) we may look for ShW in some
frequency intervals, without preliminary fixation of their frequencies and (ii) we may
look for any frequency, which may be a signal, nothing to do with the tidal signals.

The general form of the option to be added is

>W-non-tid-freq-interval: ®, o, Ao cpd

If “cpd” is added, as above, then ®, ®, and A® are frequencies in cpd; if
“cpd” is not added - ®, ®, and Aw are frequencies in degrees/hour, i.e. angular

frequencies.
The effect is that we get a variable frequency

o=0, tkAew wherek=0,1,2,...

which vary in the interval (0, ®,) by astep Aw.

The values of @ are included one by one, independently in the analysis. For
each @ VAV creates a group, composed by a single wave with frequency ® and
unknown amplitude and phase. Thus the equations, which are composed for the usual
tidal groups, now are raised by two new equations. The new system is solved and we
get estimates of the elements of the new wave.

Then ® is replaced by a new frequency, increased by Aw. The process
continues until all values in the interval (@, ®,) with step Aw are exhausted.

This option seems to be similar to the spectral analysis but actually it is not the
same. The spectral analysis will estimate the amplitude at given frequency @ without
taking into account the existence of strong signals at the tidal frequencies. Our
procedure takes into account the main tidal signal, because the main tidal constituents
remain in the system of equations.

Now we shall again analyze the San Juan data by using

New CDATA
>F-T-window: 24
>F-k-drift-polyn: 0
>GR-LP: 1
>F-Highest-freq: 11 cpd
>GR-HF: 2
>E-T-interval: 1985110 1999 12 31 23
>W-non-tid-freq-interval: 5.7 6.1 0.001 cpd
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Since we need the creation and the solution of many systems of equations, this
operation is slow. In particular for such large series as San Juan, we have to use very
small frequency step A, i.e. a very great number of frequencies and systems of
equations.

Therefore through >E-T-interval: 1985110 1999 12 31 23 we exclude all data
before 1.01.2000 and thus we shall deal only with 1 year data: 1.01.2000 — 31.12.2000.

Through >W-non-tid-freg-interval: 5.7 6.1  0.001 cpd we shall check the
frequency interval from 5.7 cpd till 6.1 cpd with a step 0.001 cpd. This is an interval in
which we may expect to find some ShW tides.

This interval covers the tides M6 and S6, which are included, as a default case,
in the equations. Since the frequency interval covers M6 and S6, they are automatically
excluded from the usual analysis. Otherwise they would interfere with some of the new
frequencies and we would get linearly dependent equations.

The results from this processing are stored in the output file nontid_freq.dat.
For every frequency VAV computes the amplitude and its MSD . Thus we get in
nontid_freq.dat for every frequency the amplitude (column “amplit”) and two
threshold levels: 1.96c and 3¢ in columns “conf95” and “conf3s” respectively.

Figure 15.1 is built up by using nontid_freq.dat when the options above are
used. We have got a pick at the frequency of M6, confirming the result in Table 13.3.
However, we have got several new picks, i.e. new non-tidal waves, the most important
being at frequency 5.8650 cpd. It remains now to compare with the ShW determined
earlier.
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Figure 15.1. San Juan, looking for new waves between 5.7 & 6.1 cpd.

Now, in order to study the spectrum at D8 we shall replace, in the New CDATA
above >W-non-tid-freq-interval: 5.7 6.1  0.001 cpd by

>W-non-tid-freq-interval: 7.5 8.1 0.001 cpd

The result is presented in Figure 15.2. Now the analysis confirms the result
about M8 in Table 13.3 but we have again a new pick, i.e. a new non-tidal wave at
frequency 7.797 cpd. It is again interesting to compare with the earlier results about the
ShW tides.



11079

freq.=7.7290 cpd (M8)  freq.=7.797 cpd

0.06 7 amplit.=0.051 cm amplit =0.050 cm 3c
0.05
£ 0.04 - /
= 0.03
£ 0.02
0.01
O'OOIIIIIIIIIIIIIII'I RERNRN

0s°L

S’L
vSL
9¢°L
8S°L
09°L o
9L
Y9°L A
99°L
89°L
oL'L H
UL+
17LL —
98'L
88'L
06°'L
6L
Y6'L
96°L o
86°'L
00'8
08 H
0’8
908
80'8 -

T T T T
NN
29 \l OO 00 OO
&SN R
frequency cpd

Figure 15.2. San Juan, looking for new waves in the interval 7.5, 8.1 cpd.

Example 16. Time variations of non-tidal waves, data San Juan

VAYV can study the time variations of the tidal parameters by partition the data in
short segments and getting the results from each segment. As we shall see, the segments
can be with or without overlapping.

Now we shall use the data San Juan with

New CDATA
>F-T-window: 24
>F-k-drift-polyn: 0
>GR-LP: 1
>F-Highest-freq: 11 cpd
>GR-HF: 2
>W-non-tid-freq: 5.7 6.1 0.001 cpd
>TV-length-segment-days: 366
>TV-shift-segments-days: 183

Compared to the case in Example 15, we have skipped the >E-T-interval...
because here we deal with the whole series of data and we have added the last two
options >TV- related with “Time Variations”. Their effect is the following.

The whole series of data is partitioned in segments of length 366 days. The
segments are moved by 183 days, i.e. every 2 neighboring segments have 50%
overlapping. The data of every segment is analyzed separately and we get for every
segment, i.e. for its central epoch the amplitudes in the selected frequency range. Thus
we get the amplitudes H as a function of both frequency and time, i.e. H = H(»,T) ina

time frequency domain. The amplitudes H(®,7) are computed together with their
MSD o6 =o(w,T). This allows building up confidential intervals and finding points of
o and T where H(w,T) is significantly different from zero. l.e. segments at epoch T

where the frequency o is really manifested.
The file tvar_nontid_2d.dat represents H(®»,7) and 3c(w,7) (very high

confidential threshold level) in a table. It can be used to draw 2-D spectra, similar to
Figure 15.1, but at a series of epochs, namely at the epochs of all segments.
The file tvar_nontid_3d.dat provides H(®»,7) in column “amplit”,

1.96 o(w,T) in column “conf 95%” and 3 o(®,7T’) in column “conf 3sg”. In columns
“damp95%” and “damp3sg” we have the quantities

018 -
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amplit — conf 95% when amplit > conf 95%
damp95% = .
0 when amplit < conf 95%
amplit — conf 3sg when amplit > conf_3sg
damp3sg = .
0 when amplit < conf 3sg
When we have damp95% >0 we may pretend that the amplitude is significant
with a risk for error 5%. When we have damp3sg>0 we may pretend that the

amplitude is significant with a very small risk for error.
Figure 16.1 represents the damp3sg as a function of the time/frequency domain,

obtained by the application of the New CDATA shown above.

Figure 16.1. San Juan, 3-D picture in a time frequency domain of damp3sg from file
tvar_nontid_3d.dat, showing where we have significant amplitudes.

Here we have clearly significant amplitudes, rather stable in the time, at the
frequencies: 5.78, 5.81, 5.85 & 5.88 cpd and very small amplitudes, which appear and
disappear at frequency 5.745 cpd. If we compare with Figure 15.1, we see that here we
have a small shift towards lower frequencies; in particular the most important 5.797 cpd
of M6 seems shifted to 5.78 cpd.

In order to check we have drawn Figure 16.2, by using again damp3sg from
tvar_nontid_3d.dat, but by neglecting the time.

A careful study of Figure 16.2 shows that there are not contradictions with
Figure 15.1. E.g. the detail, shown on Figure 16.3, allows us to estimate that the pick
shown is at or very closed to the frequency 5.797 cpd of M6, and certainly not at the
frequency 5.78 cpd of Figure 16.1.
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Figure 16.2. San Juan, significant amplitudes, represented by damp3sg>0, taken from
tvar_nontid_3d.dat, all epochs represented by one curve, .
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Figure 16.3. Detail of Figure 16.2, confirming the existence of the frequency of M6.

Example 17. Prediction of the tidal signal by using input tidal parameters and
corrections to the absolute gravity observations.

In Example 11 we have predicted the tidal signal at a tidal station through the
analysis of