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A study of various harmonic analysis

methods for earth tides observations .

De Meyer Frans

Abstract.

The harmonic analysis methods of Venedikov and Chojnicki together with several new
approaches are examined in the paper; their relative merits can be weighed against,each other from
the results in Tables 1 - 8. 1i is shown how the reconstructed tides, obtained through an carlier de-
veloped model, can be turned to account to detect conspicuous data intervals in the observations.
Taking the autocorrelations of the observed residuals into consideration, more realistic estimates of

the standard errors of the tidal constants are acquired, i.¢: the structure of the residual spectrum is

explicitely incorporated into the computations. The Markov estimation method is also considered

and is proven to yield slightly better results than the classical least squares analysis. A new proce-
dure of drift elimination, not founded on the principle of numerical filtering, is tested and looks
very promising in the sense that a modification of Chojnicki’s idea results in coherent tidal para-
meters with standard errors smaller than those hitherto obtained. Investigation of the residual
spectrum after least squares adjustment discloses the existence of some non-linear waves which
find their origin in shallow water loading and which, therefore, must be included in the harmonic

analysis.

1. Introduction.

In earth tide studies the comparison of the observed amplitudes and phases with the
theoretical constants provides the parameters refated to the eatth’s rheology. Since the motive
forces of the luni-solar attraction are known beforehand, the tide - generating potential can be
decomposed into a number of constituents of accurately determined frequencies and the problem
reduces in practice to the fitting of a linear trigonometric model to the observations. The methods
of Venedikov (1966), Usandivaras-Ducarme (1969) and Chojnicki (1972) for the harmonic analysis
of earth tide data are devised mainly to treat long series and are based on the princi}iles of numeri-
cal filtering and least squares. The tidal parameters obtained by these approaches are in good agree-
ment but there is much controversy about the reliability of the standard errors of the estimated

constants.

Though the signal is extremely well defined in the observations, the statistical proper-
ties of the noise process are in general poorly understood and controlled. The method of least squares
give dependable mean square errors providing that the error series is uncorrelated,ie. when the noise
is uniform at all frequencies of the spectrum. Even in the case of input white noise the filtering in-
troduces 2 severe correlation in the output noise and transforms the white noise into coloured noise.

When we think in terms of noise” we generally have in mind reading or accidental errors. But the
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: slow variations, of any origin, in the instrumental

~

situation is more ’”""“U]i. EEC&‘Q&’E for ¢ '&"‘ {:"éﬁia

conditions produce as rift” of the instrumental zero; external effects acting upon or inside

the Farth’s crust may superpose th elves on the drift, such as changes in the underground water

level, atmospl nknown local disturbances. For the harmonic analysis it is very

difficult to s ate such irregular phenomena from the tidal waves. Noise is also generated in the ti-

dal wave b ands as a result of temperature variations acting on the instruments and which combine

their effect i into a S, meteorological wave, and as a . result also of atmospheric pressure fluctuations,

which producea S, meteorological ¢ smpv nent. In this context the concept of noise’ * stands for a

combination of a more or _; anging time function, disturbances at the frequengies of_the

theoretical model and sma
The sta he residual series ought to the incorporated into the calcula-

tions in order to obta stimates of the %tandard errors of the unknowns. It will be

shown how the autoco on fn:rwﬁmi of the observed residuals can be used for this purpose. More-

over the residual S‘i’ﬁiﬂ‘%:?"i,‘iéfgu fter vidal analysis betrays the existence in the observations of a number of

non-linear waves, - loading, which are generally not included into the model. This
corroborates the po:m‘::; of view of Barker (1978).

Up to now th

. method, which gives the best linear unbiased es-
o

timates of the

be applicable in practice for long series because
of computational di sbserved residuals of the least squares analysis it will be pos-

ressive model of low order and to transform it

sible to appro OWIL dzm by an autoregre
to nearly white noise. In this way the us ‘f" the Markov estimation becomes possible.

2. The classical method of least squares.

We consider the jpmci@m of estimating the value of the dependent variable y on the

basis of information on the fixed variates xy , ... in this context it will be assumed always that

7 X n ?
the x. are determinate functions which can be computed without error. Let us assume that y can

J

1 4 rod b K g ,JE,“_.J,. i(’ .
De EPPE“QXH’(!E&L@Q ijy a iﬂli’iiﬂ IModael of thﬂ OrIT

" n )
y=% bix;+te= XL byx te 1
d I (.
j=Lo =10
where the unknown regression coefficients by , ..., b, areto be determined from m=2n + 1 si-
multaneous observations x,. on the x; a nd observations y, on y, with 1<¢t<m and 1<j<n.
J
At the time instant ¢ we have
i =1 7
Tos -ations the means of all variables are considered to be zero; in prac-

tice this implies that thy ctical means of the variates should be subtracted from the individual

values. The first Eq. (1) represents the true model in terms of the parameters b] and

the true, although ankzmwn error € , whilethe second is in terms of the estimates bj of the parame-

ters and the mmdu al €.

Using the matrix notation Eq. (2) is expressed in the form
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Y=XB+E=XB+E (3)

where Y= (y1 5 Ym) s B= (by yenrb,) 5 EF (€1 s oer €) and where X denotes the m Xn
matrix with elements x;; (the transpose of any vector ot matrix M is indicated by M’). If the nor-

mal matrix A= X’X is nonsingular the least squares estimate B of B is given by

B=(XX) ! XY 4)
with covariance matrix

81(B-B) (B~ Byl=(XX) ' X' VX (XX | (5)

(Grenander and Rosenblatt, 1966, p.234), where & stands for the mathematical expectation value
and V is the m X m covariance matrix of the realization (€3 , . s €) of the random process €,

with elements v;; = &le; ¢ 1.

Should € be purely white noise, ancorrelated with the regressors xg , w5 Xy and with

2=
€

with I the identity matrix and 8 the Kronecker delta. The covariance matrix for the least squares

variance o2 = &[ €? ], then the covariance matrix V becomes diagonal , V'= Gé I ,since v;j =0 é 6ij ,
estimation for uncorrelated residuals consequently reduces to the classical expression

&((B~B) (B-B)1=0% (X'X)"! (6)

In general, however, the theoretical residuals €, are more or less correlated; this does

not prevent us from estimating the model parameters b; with the least squares method and, hence,

s

from obtaining an unbiased estimate 0% =E E[(m—n) of the variance of the noise process €, but
the expression (6) for the covariance matrix of the regression coefficients can no longer be trusted
to provide realistic error limits in the case of autocorrelated residuals. if the correlation in the €, is

strong the errors on the b j can be largely underestimated by Eq. ( 6).

Though generally the matrix y=_8&[ EE’] itself is not known a priori, use can be made

7 of the observed residuals

trix

of Eq. (5) by substituting the covariance m

¥ R
’E == j”’g, -2 9;5 b. (7)

for the covariance matrix V of the theoretical residuals. The covariance matrix of the regression

»

o

parameters is then estimated by

&[(B - B) (B—By1=(X'X)"! CX’X)"! (8)

where C is the n X n matrix C= X'V X. Foras

and autocorrelations

o
$)

C k=0,1,2, . 9)

the matrix V takes a Toeplitz structure with elements



. . 1<i,j<n (10)

. R
Since the autocorrelations pj, can be computed from the series of observed residuals ¢, , the
elements ¢j of the matrix C are given by the expression

" i

C';xsz, = > x-x-;) .
i % T, =1 ri *sj Pls—rl
. mo,
25‘2%%;}(@)4‘ Z pk[x;j(kaﬁ(k)]} (11)-
k=1
where
m—k
Xgj(R)= 2 %y Xy g pj (12)
=1

are the cross-covariances between x; and ;.

]

3. The generalized method of least squares.

1f the covariance matrix V' of the noise process € is known it follows from the

Gauss - Markov theorem that each element of the Markov estimate
B=(X'VIXy'X VY (13)

is the best linear unbiased estimate (B.L.U.E.) of the corresponding component of B, in the sense

that its covariance matrix

o~

8 [(B-B)(B-B)] =X’ V™' X)! | (14)

has the property that the matsix & [(B—B)(B~B) — (B B)(B— B)’] is positive semidefinite for
any other unbiased estimate B of B, which means that B is a minimum variance linear unbiased
estimate of B . For the theory of efficient estimation we refer to the works of Hannan (1960, Chap-

ter 5), Grenander and Rosenblatt (1966, Chapter 7) and Anderson (1971, Chapter 10).

At first sight the use of the Markov estimation meets with insuperable difficulties. In-
deed, the covariance matrix V' of the true residuals €, is not known beforehand in most cases and
even if V' is replaced by the covariance matrix ¥ of the observed residuals ;t , obtained by a pre-
viously executed least squares analysis, we still have the problem of inverting the m X m matrix %
before it can be used in Eqs (13) and (14). For a large numbietr of observations ( m of the order of
10%) the Markov estimation seems to be inapplicable, even iffcan reasonably be assumed that V has

a Toeplitz structure with only m independent elements 0g , 01 5005 Py -y

This problem, however, can be solved explicitly if the noise process is of the autoregres-
sive (AR) type ; in this case the process €; satisfies the finite difference equation
P
g§@ op € L=V (15)
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with constant coe€ﬁc1ems Qg @ 5eee s Oy such that the sequence v, consists of mdependently
and identically distributed random variables (white noise). The elements W of V! are then ex-
plicitly determined by the AR parameters a;

]
B4l
o = o

vl = I o, O, 1: s , o<li-jli<p
=0 k “k+li -l J
(16)
=0 s, op<tii-jl

(Anderson, 1971, p. 576), which means that V™' is again of the Toeplitz type and completely

determined by the autocorrelations of the AR operator (&g , 03 5 -, ap} . Tt then follows that.

¥t can be uniquely decomposed as
Vl=AA (17)

with A the subdiagonal matrix

Olyy 0 & g 0 1) 0
{.‘{22 Olgn 0 ] 4] (” G G
f}ig{ 8 39 G ’; G B @ ﬁ
0y, Qg 0 0 0 0
A= | a, Doy, ’ 0 0 0 (18)
0 o, 0y 0 0
O . 0 0 0 0o 0
G O 4 ) 0 ) Oly Cig

sion coefficients and tha

P .
Z oy € (19)
b o= ;\j‘;

-

t the linear

o

2 nodel can be transformed into

o

Y=XB +E (20)

with
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y=4avy X =AX E = AE (1)

Using Eq. (17) it is easy to see that the covariance matrix V of the transformed noise E equals
the identity matrix ,i.e. V=8&[E E'l=AV A =1I. Therefore the Markov estimate (13) can be

written
B=(X’X)' XY (22)

with covariance matrix

~ A

& [(B-B)(B-B) 1= (X'X)" (23)

50 that the Markov estimation amounts to an ordinary least squares analysis with uncorrelated residuals

on the tranformed linear model (20).

In view of the special structure of the matrix A we only have to estimats the AR para-
meters (Olg , «oe s ap) from the sequence of observed residuals, to perform the discrete convolutions
~ P ~ P

Yi= I opYpp 9 xtj::go Ok Xth, (24)

and to proceed to the estimation of the bj from the transformed model

I

Aot ~ .

j=1
Since the ;t are nearly uncorrelated the method of least squares, applied to the model (25), will give

reliable estimates (23) of the standard errors of the regression parameters bj .

4. Application to the trigonometric model of the earth tides.

Let us represent the hourly ordinate readings of an earth tide record by

ye=sptd e (26)
where
-3 ot + 2

stands for the observed tides ; H. is the observed amplitude and ¢; is the observed phase of the
tidal wave of frequency w; . The sum of the instrumental drift and the long period tides is denoted

by dt while € describes the random noise process.

Figure 1 shows the power spectrum of part of a record by the horizontal pendulum
Verbaandert - Melchior N© 28, East-West component (station Dourbes, Belgium). It consists of
a superposition of the diurnal (D), semi-diurnal (SD) and ter-diurnal (TD) oscillations upon a
continuumof non-tidal origin. The power spectrum is seen to be almost flat for frequencies f larger

than 0.17 cph (cycles/hour); if the white noise level at the high-frequency end of the spectrum is
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maintained throughout the entire Nyquist interval 0 <f < 0.5 cph, the square root of the total in-
tegrated power would be 1 mseca. This value may be interpreted as the mean square error of a sin-

gle reading and it corresponds to 0.2 mm on the record.

Since it is commonly assumed that tides, drift and random errors are mutually uncorre-

lated, the power spectrum Pyy {f) of the observed record can be written as the sum
Pyy(f) = ng(f) + Pym(f) (28)

of the power spectrum P (f) of the observed tides plus the power spectrum P, () = Pyg(f) + Pgcf)
of the coloured noise n,=d, + ¢, . The presence of the instrumental drift utterly hampers an adequate
harmonic analysis of the data since, in this context, the concept “’noise’ now stands for the sum of the
drift, which is in general a smoothly varying function, plus random disturbances. The random error
series appears in the power spectrum of Fig. 1 as a constant level at the higher frequencies, while the

contribution of the drift is seen as a coloured noise at the low frequencies.

Most methods of harmonic analysis of earth tide records use numerical filtering to elimi-
nate the frequencies external to the model accepted to describe the tidal observations, thus transforming
the input y, into the filtered sequence

=Syt (29)

L]

by means of a convolution filter with impulse response { by, +E, ; ¥, ,s, and #, are given by the
¥ h imp ; Y, v s ; are given by

respective discrete convolutions

_ P : . P )
;= I hoy, ; $p= L Mpspy
rE-p r=-p
(30)
- - - P
ﬂt zdt +€i’ B z ,, -+ ) :’E ;h ;:gfw“i"
r=-p r=-p

Since €, mainly contributes to the hi iist interval, a band-pass filter

for the diurnal band (say) mas itput noise € of the random

errors; the contribution of the ¢ s, but inside the band the
contribution of the drift is not elimi Band ing therefore is not fit to reduce the noise
in the tidal wave bands. In addition, this technique has a very unattractive consequence since the out-
put noise ?:t becomes highly autocorrelated even if the input noise were truly uncorrelated. Indeed,

assuming the input noise to be stationary with zero mean, its autocovariance function is defined by

Cj:g{ ne }E (31)

and the autocovariance function of the filtered noise will be given by

_ - PP
Cj:&[ﬂt ﬂhf} = 3 2 %?”hf CELNS (32)
. o= .«F £ - E:;a N
In terms of the autocorrelations p;= Cj/Co , ;}; = %/;O , with ¢, =03= & n2] and C—o = G;_ =

&[ ;{tz ] , we obtain the relationship



2 2 & P
o P =0, Z Z  hh Pis s (33)
r=-p s=-p

and, for j=

. .. P D SR

=4[ W+2 I o T hhy (34)

r=-p j=t " r=-p

If n, is a realization of a white noise process (po =1, #; =0 for j+# 0) with variance

o’

2 we conclude that the variance of the or émal noise process will be modified (and generally will be

reduced) by the filtering with the factor . But Eq. (33) can also be written

- P

o2 p; =0y, T u; P (35)
a i 7 r=p r Pjr
where
-7l :
we= X hghg, (36)
s=-p

is the autocorrelation sequence of the filter coefficients hy, . Evenin the absence of drift from the
registration and purely white input noise, it follows that the autocorrelations of the output noise

are precisely determined by the autocorrelations of the filterweights, i.e.

2 p.
71

o = 2 .
¢ J Un #]
which shows that the output noise anyhow becomes highly autocorrelated by either band-pass fil-

tering or any other smoothing technique.

To show the form of the correlation that can be expected, we refer to the fact that the

autocovariance function is the Fourier transform of the power spectrum
1/2 if
c =‘§ Ly P (37)

The power spectra of the input and output noise are then related by

Por (f)y=1H)I? Ppyu(f) (38)
(Lee, 1960, p. 333), where

P L
Hf)= T ™ (39)
r=-p

is the frequency response of the filter {hk} . For an ideal band-pass filter between the frequencies

fi and f, and input white noise , P, (f) =02, we obtain

nr

-

o
= 2 U"jf, cos 2mjf df

;o = 202 (f2—J1)

Writing 2; =02 g > with g defined by

1 . . .
g0 =2(f>—f1) 5 g= —;T}: (sin 2mjf, — sin 2@jf;)
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we see that p; = g / o ,j FromFigure 2, which shows the form of the function g / go for the
band-pass filter between the frequencies f; = 0.034 cph and f, = 0.047 cph , we infer that a severe

autocorrelation can be expected in the output noise, even for white input noise.
Equation (26) can be linearized to write
q
2= Z (h cos w; t) +n; \h sin w; £)] + 1, (40)
=t
where &k is the theoretical amplitude of the tidal wave with frequecy w; (eventually modified by
the amplitude factors of the digital filters used in the data preparation), and with

o = .h. “.-“2 o S (e e o
Hy=vh fj=qjcosgy ., m=—1sing (41)

The parameters in which we are interested are the ratios v; (or 6]) of the observed to the theoretical
amplitudes and the differences ;i ¢» @1 between the observed and the theoretical phases sD of
the tidal waves.

Comparing Eq. (40) with the general expression (2), and for 1 <j<g , we identify

= =E =h. .
n=12q , b]‘ Ej , %y = h; cos w; t
(42)
bj‘-* fz:??j’ R ,j g ] sin wj t
Using the trigonometric relation (Blackman and Tukey, 1958, p. 80)
m sin mw/2
Cp(w)= 2 coswi= e COS (M + 1) /2
t=1 sin w/2
(43)
m sin mw/2
Sy (W)= Z. sin w t = sin (m + 1}.w/2
=1 sin w/2

the elements of the symmetrical normal matrix A =X’X for m observations and 1<1{,j<q can

be written
=R, h. t5¢ (m .= cs
% ks h] 15" (m) ) % jeq= h; h i (m)
(44)
¢ -
ai""f,i,j' hlhjt];( N di"“éﬁf‘f‘} hihjtij( )
with
m 1
t(‘m i_ ) cos ¢j; t cos wj t =--§-[Cm(wi - o.:j) + Cppylw; + wj)]
m 1
(m) i—‘[ cos w; ¢ sin w; t-—«;{ mlo; + wj) Sm(wi—-wj)] (45)

1
tS]S (m) = t§ 1sin w; t sin w; t=—€ G, (w; — wj) = Cpy (w; + w;)]
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Since C,, (w) >m and S, (w)~>0 for w—0,and provided m is sufficiently large
and |w;— wjl is not too small for i, it is granted with a good approximation that the normal
matrix A has a diagonal structure

m Lo
“ij m«? hi Sij s 1<i,j<2¢q
so that the elements of A™! can be approximated by
|
o~ ae — §..
= m h;-z 6’]
Consequently,
2
2 Oy
var[%i]=var[ni]:m —
m g2
, i (46)
2 On )
var [7;] :7{@; . vax[K,l-]zc—-
h; "o

In the case of a trigonometric model we conclude that the least squares method has an
efficiency factor 2 ; this means that the standard errors of the regression parameters, obtained
m
by a least squares analysis over a period of one year, can be reduced by a factor 4 if 16 years of

observations are used.

The relation ship (46) has another important consequence : if Ayg denotes the stan-
dard error of the v — factor of the wave K; andif Avy; is the standard error of the y— factor of a
tidal wave other than K, , we get the relation ship ,
_ K,

Av; T AYK, (47)
which is independent from both the number of observations and the standard deviation of the noise
in the observations. If, for example, in a least squares analysis for the diurnal band the amplitude of
the wave K, is estimated with an error of 1%, the amplitude of the wave J; canbe expected to be
estimated with an error of 0.53011/0.02964 ~ 18% . Also, if the amplitude of the wave ¥, is to be
estimated with an error of 1% this would require an accouracy of 0.01% for the v — factor of the wa-
ve Ky .

5. Venedikov’s method.

The first step in Venedikov’s method (1966b) consists of a band-pass filtering of the hourly
observations in order to eliminate the long period tides and to reduce the contributions of the instru-
mental drift outside the tidal wave bands. For each of the diurnal (r=1), semi-diurnal (r=2) and
ter-diurnal (r=3) bands two filters, Ct(r) and St(r) , are applied on a sequence of 48 hourly readings
without gaps and then shifted from 48 hours to avoid any superposition of data so that independent
output points are obtained. If we have m series of 48 hourly readings we thus end up with six new
series Ml-(r) and Nl-(r) of m independent datz,1 <i<m , r=1, 2,3, and it readily follows that
the Mi(r) and Ni(r) are not correlated. For the construction of the filters and a complete descrip-
tion of Venedikov’s method the reader is referred to Venedikov (1966 a, 1966 b), Melchior and Vene-
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dikov (1968) and Melchior (1978).

On the ground of geophysical considerations it can reasonably be accepted that the tidal
development can be combined into a number of wave groups and that the Love numbers are not
different for waves having near frequencies within the same group, which means that the y—and

i — factors can safely be taken to be constant for waves in the same group.

Since Venedikov’s coefficients Mi(f) and Ni(”) can be written in the form (40) of a
trigonometric model, the second step is evidently the application of the least squares method to each
tidal wave band, thus obtaining the estimates :y] and & and the standard errors ij and Alcj by
Egs. (4) and (6). It should be noted that the errors in the Mi('r) and Ni(r) series mainly arise from
the imperfect elimination of the instrumental drift by the band-pass filters Ct(r) and S t(r) , from the
fluctuations of the sensitivity of the instrument between two calibrations, and from non-tidal contri-
butions in the wave bands. In view of the fact that the three tidal bands are analyzed separately and
that the filtering is performed on non-overlapping data, Venedikov’s method implicitly assumes that
the error series in each of the Mi‘/r) and Ni(r) are uncorrelatedand also presumes a constant noise
level for each tidal frequency band. If this is not the case great care must be taken in estimating the
standard errors through Eq. (6),2s indeed the influence of autocorrelated noise may lead to underesti-
nation of the computed mean square errors. Table 1 shows the results of Venedikov’s method for the
period 1/1/1969 - 31/12/1977 using the observations made with the Verbaandert - Melchior pendulum
NC 28, East-West component at the station Dourbes (50.06N, 4.36E, H 233M, P 46M); the complete
Cartwright-Tayler-Edden potential development is used. All subsequent analyss refer to this instrument

and time interval.

Figure 3 shows the autocorrelation sequence and the power spectrum. of the observed resi=
duals after least squares adjustment for the coefficients Mi(r) ,r=1,2,3 ;the 95% confidence limits
for the antocorrelation functions are indicated by the dashed lines, and the 95% confidence band for
the power spectrum is given by the vertical bar. The power spectrum of the residuals of the Mz-(l) se-
ries indicates 2 small peak at the period T=(13.33%0.9) days, while the power spectrum of the resi-
duals of the Ia/fi@} series shows an important peak at the period T= (14.29 % 1) days. Both power

spectra noticeably deviate from a white noise level, which is estimated from the mean-square errors of

SE

the harmonic analysis. For the ter-diurnal band a white noise spectrum assumption is more justified,
3 p J

although small peaks are indicated for the periods T'=(14.29 + 1) days and T=(7.14 £ 0.3) days.

eriods happen to appear as a result of an alizsing effect of

Hion to the fact that non-linear waves induced by shallow

ni in the main tidal bands and at higher frequencies for earth tide stations

a1l demonstrate that the residual sepctrum after the tidal
analysis comprises peaks at the frequencies where the waves OP, (together with MKS; ), SK3 and

M, are located; there is also an important re i power at the frequency of the wave L, . Since the

station Dourbes is about 3 Sea it may be concluded that these non-linear

erms indeed affect the earth tid shallow water loading. Sampling with an interval

+

ts by

%,
Bl

e

At = 48h defines a Nyquist frequency Jy=gg <ph and will project the power at the frequencies of the
non-dinear waves, not included in the tidal model, to the low frequency range. The power in the vicinity

i o 3£

of the wave M, with frequency }571/52 = 0,0805114 cph will be aliased to the frequencies around
0.0805114 — ’éﬁ%” = 0,0028219 cph, which cdé:respv:mds to a period T=14.77 days. This already ex-
plains the fact thata peak at 14 days is oberved in the residual series of Mi(z). Similarly, the residual
power in the vicinity of the wave O, will be aliased to a period of about 14,19 days in the Mi(l) series
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and the residual power at the frequencies surrounding the wave MKj are aliased to a period of about
15.38 days in the M; (3) series. Since the filter Ct(3 ) imperfectly removes the wave M, from the
observations, the power at this frequency is aliased to a period of about 7.38 days in the M; (3) series,
thus accounting for the second small peak in the power spectrum of the M; (3) residuals. The filter
gains of the Venedikov filters are shown by Schiiller (1978).

In conclusion, it is anticipated that the method of Venedikov will give slightly biased
results, especially for the semi-diurnal band. Wenzel (1977) on the contrary concludes that the results
are unbiased on the basis of the observation that the computed autocorrelations are practically zero for
non-zero lags but, unfortunately, the residual power spectra are not shown in his work. However, it
can be safely stated that the effect of the peak in the residual spectrum of the M; (2) series upon the
estimation of the mean square errors of the tidal constants will be of minor 1mportance We shall re-

turn to this question in Section 6.

With a view to improving the results of the Venedikov method, Usandivaras and Ducarme
(1976) propose the following test to eliminate the abnormal 48 hour-blocks : if the value of the para-
meter

PEi={ 3 + [Ni(3)]z} 1/2

is larger than three times the maximum theoretical amplitude of the wave M; , the block i is not
considered in the harmonic analysis. Since the elimination of the drift is performed differently by

the filters Ct( ) and S; (") we propose to work on the individual values of the M; (r) ,7=1,2,3,

for each block of 48 murly readings and for each tidal band concerned. A first appllcatlon of Vene-
dikov’s method gives estimates (’}g ; ) of the tidal parameters and estimates 8r , 7=1,2,3 of

the mean square errors for the three tidal bands. During a subsequent analysis of the band with index
7, an estimated value M( ) can be computed from the model (’y] K]) and compared with the obser-
ved value M( ) for the block i If | M, (r) - M(r) | >3 Ur the block i 1s dlsm1ssed from the analysis
for the tidal band 7. At the end of the least squares analysis the model (7] K])v can eventually be up-
dated to be used in a next computation. It can of course be argued that the danger of thls procedure
lies in the trend of biasing the results of the analysis towards the original tidal model ('yJ ]) .

Figure 4 shows sections of the differences Ml(r) Mi(r) , together with the limits £ 3 ‘;r ,
referring to the same data interval. Table 2 demonstrates how the results of the harmonic analysis are
improved with this test by rejecting 54 days out of 3194 days. The standard errors for the D - and the
TD - band are slightly improved, but for the SD - band they are halved. Also note that the amplitude
1.0051 of the wave ; (Table 1) is changed to 0.5557 (Table 2) when this test for detecting anomalous
observations is applied. It must be taken into account that the rejection of conspicuous data may dras-

tically alter the <y - factors of the small waves.

6. Band- pass filtering with overlapping.

An obvious drawback of Venedikov’s method is the severe limitation of the number of
data usable for the tidal analysis since the initial set of m hourly observations is reduced to six series,
each containing only m/48 points. A generalization of this approach evidently consists in constructing
adequate band-pass filters for each tidal wave band and applying the filter weights with a shift of one

hour (and not 48 hours as in Venedikov’s method) and to perform a least squares analysis on the
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three resulting time sequences.

The main problem in numerical filter design is to obtain a good frequency cut - off
with a small number of coefficients. Let us consider an even function D (f) ,j=0,1,2, ..., having
the property of being zero outside the frequency interval — e<f<e and Dj( )=1. The frequency

response of the band-pass filter with central frequency fo and width 2¢ is now defined as
Hj(f):ﬂjff“fﬁ) (48)

with a corresponding filter function

(49)

and with r? (t)

(50)

Possible choices for D; (f) can be found in Table 3, together with the corresponding

1:(t) of infinite length must be shortened to a finite extent

» <k <p ,is taken as the set of ordinates of the
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and it is entire :ly controlled by the band- width of the fﬂ ter. The truncation points of the kernels dj (t)

e also indicated in Table 3.

As pinpointed in Section -’%, band-pass filtering forces the output noise to become highly
autocorrelated even if the input noise is a realization of a white noise process. However, the standard
errors of the least square analysis can En;: corrected by using Eq. (8) in the case of autocorrelated resi-
duals. If the autocorrelations ;3;,, of the observed residuals may be neglected for lags k greater than

some kg, then thf: elements of the matrix C in Eq. (11) are defined by

(51)

- fé:f (m—Fk)sink wj} (52)

ky,<m we can make the approximation

b (m —k) >t (m), a ) we find
¢y = gé%h@ij [1+ R () + Rg(wj)] %q,j R(wy;) ~ % g Rs{wj) }
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~

Cijoq = O {qi’j+q [1+ Ro{w;) + Reln)] + a5 Ry(w)) =0 ig R (@) § (53)

~

Ciugjug = 7% { Grq jeq 1L+ Rel) + Rl + a3 g Ro) + 01q  Rele3) §

with
ko ko .
R(w)=Z ppcoskw ; R(w)=Z ppsinkw (54)
k=1 k=1

Equations (53) show how the elements of the matrix C can be computed explicitly using
only the eiements a;: of the normal matrix A = X’X and the cosine and sine Fourier transforms of the
autocorrelations pk , k=1, of the observed residuals. For large m the normal matrix becomes al-
most diagonal and the same holds for the correction matrix C, which then : .kes entirely account of

the residual power spectrum R(w) , since the diagonal elements of C are, in a good approximation,

given by
cii =0 a; R(wy) (55)
with
ko
Rlw)=1+2 T ppcoskw (56)
k=1

The conclusion is evident : if Ab; denotes the standard error of the estimated unknown
ioa , obtained by Eq. (6) with the assumption of uncorrelated residuals, all we have to do is to replace
Ab by R(w;)!/? Ab; to take full account of the autocorrelation in the residual series. The correc-
tion factors will be denoted by R;=R(w;)'? . Applying this rule to the results reached by the Vene-
dikov method (Table 1 and Fig.3) we note that the power spectra are computed from the autocovari-
ance sequence o2 pp and not from the autocorrelations pg, . We conclude that the tidal parameters
fyl and g; are underesmmated by a factor W ~ 2.3 for the waves in the vicinity of M, , while
the correction factors for the diurnal and ter-diurnal bands may safely be considered equal to 1.

During the construction of the normal matrix A =X’X in the harmonic analysis for each
tidal band, the value of the observed residual can be tested with the procedure mennoned in Section 5.
Since Venedikov’s method already provides for a good initial tidal model ('y] K]) a thepretical value
2§7’) ,r=1,2, 3, at the time instant ¢ can be calculated with this model and compared with the filtered
value lér) ; for the computation of ly) the amplitude factors of the band-pass filters must be taken into
account. If | Zy) - Zg) >3 (AIT,. the value lg) is rejected for the tidal band with index 7. Since the
output errors become highly correlated by the band-pass filtering, the effect of an erroneous observa’
tion will be spread out over the time axis and therefore 25 values on the left and on the right of each
conspicuous observation are eliminated. The same procedure of data rejection will be used in all subse-

quent analyses.

The band-pass filters we used are characterized by the kernel dq (¢ ( ), €=0.015,
p +1=200 and central frequencies f, = 0.040272 cph , fo = 0.080546 cph , fo = 0.120786 cph for
the D, SD and TD - bands, respectively. The results of this method are summarized in Table 4; it
should be noted that the standard errors are corrected using Eq. (53). The autocorrelations of the

observed residuals after least squares adjustment are shown in Fig. 5.
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From column 6 in Table 4 it is clear that the standard errors of the amplitudes and
phases of the tidal waves could be underestimated by a factor of the order of 10 in the case of strong
correlation in the residual series when these are computed with Eq. (6) and not corrected as indica-

ted in the above mentioned procedure.

7. Markov estimation on the original observations.

What is attempted by the band-pass filtering in Section 6 is the rejection of the contribu-
tions of the instrumental drift outside the tidal wave band in question, but yet, inside the band the in-
fluence of the drift is not removed and a severe autocorrelation is introduced in-the residual series by
the filtering process. A completely different view is indicated in Section 2. At present we have already
a good model (';/j , K i) of the tidal parameters of all main waves. Using this model a recoz'lstructedi
theoretical tide s, can be subtracted from the raw observations, yielding a time series d, =y, — ;=
(4= ;t) +d, e, which comprises the real drift and the long period tides d;, the original noise pro-
cess €, ,and small tidal residuals s; — 257 . This is in fact the first step of the method of Chojnicki (1972).
The idea now is to adapt an autoregressive model of order p to this approximation glt- of the instru-
mental drift

P oL . N
Z o dip=v; (57)

The estimated AR parameters (&0 , {Axl S e &p) can be computed with the Burg scheme,
details on which will be found in Ulrych and Bishop (1975), Ulrych and Clayton (1976) and Smylie et
al (1973). The optimum order of the AR model is estimated by Akaike’s information theroretie cri-
terion AIC (Akaike, 1974).

s

The next step is to apply the filter (0, %1 5 o) ap) to the raw data in Eq. (26); the tidal
constants can then be obtained from the transformed model (25) with nearly uncorrelated noise. In
this way the drift is not eliminated from the record but transformed into a quasi white noise process.

It will be noticed

that the three tidal bands are now analyzed in one step and not separately as they

were in Venedikov ~sted in Section 6.

s method or the technique sug

wory @t,)) will be insensitive to the tidal
~ PN " .
. ,d, and v, by A(f),D(f) and N(f), res-

T - \
residual s, —s5, . D

pectively, it follows from Eq. (57) that

K2
FAW

LA(f) P g (58)

L)

since |N(f)|? =K? , where K isa constant. The power transfer function 1A(f)1* of the AR filter
is therefore inversely pmportiomaﬁ to the power spectrum of the drift and from Fig. 1 we see that the

o riall 1 PR 2 e b o i - e
operator (Mg , & 5 e &’P) has essentially the properties of a high pass filter.

From Eq. (25) it follows that the Markov estimates b, are computed by the matrix equa-

tion

1<i<n (59)
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where

m
Z Xii X4 , c.=
=1 t

aij = (60)

and taking the x,; and y; defined in Eq. (24). In the case of the trigonometrie model (40) the matrix
elements a,; can be obtained in a different way than indicated by the discrete convolutions in Eq. (24).

[
Indeed, from Egs. (60) and (24) it follows that

M P N
;=2 (T apxy)(
t=1 r=0 s

~

=

s Xps,i)
0 J

Using Eq. (42) we obtain, for 1<i , j<gq
az= 2 [h; A (w;) cos wit +h; A(o;) sin wit].

[h]- Ac(wj) cos wjt + h]« As(wj) sin wji’]

m
=2 [k AL )coswt+hA(w)smwt] (61)

[h; Ag(w;) sin it = hj Ag(e;) cos wjt]

m
= I [h; A (w;)sin wt —h; A(w;) cos w;t] .

ar .
i+q,j+q 2

h. t—Hh . .
[ jAc( j> sin wit =Ry s((""]) cos w]t]

where
A P .
Afw)= 2T opcoskw , Afw)= 2 opsinkw (62)
k=0 k=0

are the cosine and sine Fourier transforms, respectively, of the AR filter.

Similarly it is shown that

m
¢; EI ( 23 ozk Yik) [}t clw;) cos wit + h; A(w;) sin wit]
m.opo
Ci+q =2Z (kZ o, 'yi‘—k) W’ll AC<QJ1> sin Q.Jii' - hl As(wi) cos Ct)lt]
t=1 k=0

Although we have written c;t for the argument of the trigonometric functions we refer
to Venedikov (1966 b) and Melchior (1978) for an exact computation of the arguments of the tidal
waves. Comparing Eqgs. (61) and (63) with Eqs. (40) and (44) we conclude that the computation of
functions such as h; trig w:t (where trig” stands for cos or sin) in the least squares analysis is re-
placed by the calculation of function such as k] (@) trig w;t and h} As(w]) trig wit in the Markov

estimation, which means that the theoretical amplitudes merely need to be replaced by h] A ])
and h A (w ). In the least squares analysis we have to add up expressious like h; h; trig w;t trig wit
at the time mstamts t to obtain the matrix elements a;; ; Eq. (61) shows how the magrix Z X X
can be computed without performing explicitly the discrete convolutions of the AR filter (ao , ozl ,

voes P) with the x,;. The only convolution that has to be executed is the computation of the trans-
o
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formed observations y, in Eq. (24).

For the instrument and observing interval concerned we found that an AR model of
the order p=38 effectively reduces the approximation th of the instrumental drift to a nearly un-
correlated time sequence. However it should be stated that the AR model of order p=8 for zlt
is obtained from 3000 consecutive data and that it describes the drift fairly well in this restricted time
interval, but in view of the fact that the actual instrumental drift must be regarded as a nonstationary
phenomenon, the performance of the filter (&9 , &1 s e s &p) could be quite different for other obser-

ving intervals.

Certainly, advantages of this method are, first, that we work with the original data spaced
At=1 hour in time which thus increas €s considerably the number of data available for the analysis, and,
second, that we can have access also to the series of observed residuals. An evident drawback in compa-

rison with Venedikov’s method is the important increase of computer time requred.

The results of this method are summarized in Table 5 and the autocorrelations of the obser-
ved residuals ;t' are shown in Fig, 6. The standard deviation now stands for the root-mean-square error
of the noise process ;t and it estimates the white noise level at the end of the Nyquist interval. From
Table § we conclude that the corrected standard errors are not essentially different from those obtained
by the assumption of uncorrelated residuals; it is accordingly safe to regard the ;t as a realization of a
white noise process. This conclusion is further confirmed by the form of the autocorrelation sequence

in Fig, 6.

The method of Usandivaras and Ducarme (1969) clearly belongs to this class. As an obser”

vation equation the difference between two successive readings is considered
2=y Y S TS T (dp—dpy) (e €py)

This corresponds to the application of the causal filter ho =1 , h_, =—1 totheraw

observations, with a transferfunction
H(w) = 1= cos w +isin w Jit=-1,

T

If the drift is almost linear it may be expected to be

having essentially the properties of ahigh p

sufficiently suppressed by the filter, toget period tides (the ampli tude factor at the fre-

quency of the wave M¢ is 0.01916) , bu
sidual in the error series of z,. A disadvantage of the method is the fact that the error series €, €.,
becomes more correlated and the method therefore tends to underestimate slightly the standard errors
of the tidal constants; this effect , however, can be eliminated by considering only every second point

in the output series 2.

8. Chojnicki’s method.

The method of Chojnicki (1972) starts with a model (%/ , ;2]') of the tidal constants of
oIl main waves in the diurnal, semi-diurnal and ter-diurnal bands, from which a theroretical tide s, is
reconstructed. When this series ;t is subtracted from the raw observations y; in Eq.(26)a first ap-
proximation zit of the drift is obtained :

~ ~

dt:ytmst’:(st—;t) +ny (64)
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where the noise process, n,=d, + 1, + €, , comprises the actual instrumental drift d, , the long
period tides [, , and the random disturbances €;. To eliminate the small tidal residuals s, — ;t ,

the Pertzev filter (Melchior, 1978, p. 168) with coefficients py, , —18 <k <18 , is applied to zlt
and the result of this filtering is considered as an approximation to both the actual instrumental drift
and the long period variations

18 18 18

p— A A

d=,Z_1g Pl Atk Z 1o Pl ek ™0 k) T2 o PR ek (65)

The Pertzev filter is symmetrical (p_g, = py,) with coefficients po =p, =ps =ps =ps =p1o =p1s =1/15
and all other weights are zero.

The time series d, is next subtracted from the original data y, and a least squares analysis
. is started on the modified observations

B B 18 X 18
yt=yt—dt=st+”t_ b PL (St—k—st—k)—_ > PL Mk
k=—18 _ k=—18
18 18 o 18 (66)
=2  qpsppt 2 ppspRt 2 qp "4k
h=—18 hom1g RTER T D g TR

where the filtercoefficients g, are defined by go =1-po , g, =~ pp, for k0. The filter g, has
essentially the properties of a high-pass filter.

Denoting by P(f) and Q(f)=1—P(f) the respective amplitude responses of the filters py,

and g}, , Eq. (66) can likewise be expressed in terms of the Fourier transforms

Y(f) = Q) SU) + P S(f) + Q) N() (67)
The frequency response Q(f) is shown by De Meyer (1973, p.3537, Fig. 1.3) and can be computed
easily from
18
Qf)=qo +2 = q cos2mkf (68)
k=1

Equation (67) clearly shows that the amplitudes of the observed tides are slightly modi-
fied by the value of the amplitude response Q(f) at the frequencies of the tidal waves and that the

noise process n; in the original observations is transformed to the weighted sum of ordinates

18 18
b q111t_k=2 Qk(d—k+l—k+e—k)
k=—18 k k=—18 ' g g

in the output data ;t . Resulting from the fact that gj, isnota good high-pass filter, the drift is not
entirely eliminated from the low-frequency part of the Nyquist interval (and certainly not from the ti-
dal wave bands), but modified to Q(f) D(f) . For linearly changing drifts this effect can be expected to
be small, but for rapidly changing drifts, as we observe for horizontal pendulum data, there can be an
important drift residual in the series y; . Besides this imperfect attenuation bf the low-frequency com-

ponents in the noise process the Pertzev filter also introduces a strong autocorrelation in the residuals.

The residuals P(f) :%U') of the theoretical model may safely be regarded as being zero in
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view of the fact that the Pertzev filter p;, behaves like an adequate band-reject filter for the three tidal .
wave bands in question. ‘From the point of view of filter theory Chojnicki’s method therefore is equiva-
lent to a high-pass filtering scheme with coefficients gy, , and to the execution of an harmonie analysis

on the filtered data

T 18 18
Y= T Y= E et Z O dptik
k=18 =T
This conclusion corroborates the opinion of Schiiller (1975) that the use of a theoretical model ;t is
not needed a priori.

The results achieved with Chojnicki’s method are summarized in Table 6 and the autocorrelations
of the observed residuals are shown in Fig. 7. We conclude that the uncorrected standarcg errors of the
tidal parameters are underestimated by a factor of the order 3 in the D-band but the root-mean square
errors for the SD-band are not essentially changed when the autocorrelations of the residuals are taken
into account. The standard deviation 5.60 m seca estimates the white noise level in the frequency inter-
val 0.03 < £< 0.05 cph; its relatively large value indicates that there is an important drift residual left
in the filtered observations Si—t

9. A modification of Chojnicki’s method.

The fact that the instrumental drift can be inadeépmtely estimated from the
observations by the Pertzev filter is illustrated in Fig, 8, where a well selected observation interval with
a rapidly changing trend is shown for the instrument concerned. We note the relatively Lirge dlfferences
between the drift dt , obtained by the method of Chojnicki, and the first approximation dt Vi~ St
If the tidal model s, is fairly good it can be argued intuitively that d should follow the curve dt more
closely. Therefore we have tested a method of drift correction, described below, which is not based on

the principle of filtering,

Starting from the time series d, =y, —s, we select (2p + 1) consecutive values of d, ateach
time instant ¢, such that p vaiueq are on the left of ¢ and p values are on the right of ¢. In this
time interval of (2p + 1) values d b T p<k<p, tnecurve dt is approximated in the least squares

sense by a quadratic expression
d, 2D, =a+bt +ci? (68)

and the constants a, b, ¢ can be estimated from the (2p -+ 1) values of d by the least squares
method, thus obtaining the value of D, at the time 7. Shifting the origin mth 1 hour and repeating
this procedure, the time sequence f“ is obtained. Figure 8 shows that D, is much clpbser to glt than
the drife d, obtained by the Pertzev filter. This new D, is now supposed to be an approximation of

the actual instrumental drift and a tidal analysis can be started on the differences y,— D
ys V¢ te

The results of this method are given in Table 7 and the autocorrelations of the observed resi-
duals are shown in Fig. 9. We conclude that the standard errors under the assumption of uncorrelated

" noise should be corrected by a factor of the order of 2 in the D-band and by a factor of the order of 3

in the SD-band; for the ThH-band the correction does not scam to have an appreciable effect. For this

analysis p =12 is chosen, Furthermore it is seen that the standard deviation for this method is about
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one half of the standard deviation for Chojnicki’s method and that ;:he corrected root-mean-square errors
of the tidal parameters for the diurnal band are about three times smaller than those in Table 6. The stan-
dard errors are nearly equivalent in the SD-band for both methods.

Althought it is tempting to claim that this method is superior to the other techniques we have
mentioned, we must clearly point out that it is not evident how this drift elimination affects the Fourier
spectrum and especially the amplitudes of the observed tidal waves. In addition it can be argued that the
final tidal model will be biased towards the model originally selected for constructing the theoretical tides.
This method must be seen in the context of a better determination of the fine structure of the tidal spec-
trum and especially as concerns the diurnal band (wave ;). Therefore further investigation of this pro- -

cedure is required.

Since the use of a theoretical tidal sequence ;t does not seemessential for eliminating the drift
the logical improvement of the method of Chojnicki can be outlined in the following steps :

(1) low-pass filtering of the data with cut - off frequency
f.=0.14 cph JAt=1h , 50 coefficients ,

(2) decimation of the filtered output by taking every third point in order to reduce the number
of computations,

(3) high-pass filtering of the decimated series with cut - off frequency
f.=0.03 cph At = 3h, 50 coefficients ,

(4) execution of a least-squares analysis on the resulting output.

This rather simple technique gives very reliable results as can be seen in Table 8; the autocorrela-
tions of the observed residuals are shown in Fig. 10. The correction factors R; are of the order of 4

and 2 for the diurnal and semi-diurnal band, respectively.

10. The residual spectrum.

Lecolazet and Melchior (1977), Wenzel (1977) and Barker (1978) have advocated for a careful
inspection of the residual spectrum after least squares adjustment. Indeed the ultimate goal of any me-
thod of tidal analysis is to end up with a constant power spectrum of the observed residuals over the
entire Nyquist interval, from which the conclusion would be reached that the noise process in the resi-
dual series should be white and that nothing could be gained after this stage for the same observing in-
terval. In practice it is found that the residual spectra. deviate considerably from this ideal situation. A
non-constant power spectrum arises if the instrumental drift is not perfectly eliminated from the data,
if some waves are inadequately described or not included in the linear model or if the amplitudes of
some tidal waves suffer from modulation effects. Examples can be seen in Figs. 2 and 3 of Barker
(1978, p. 4609-4610), where the residual spectra of data from an Askania tiltmeter are shown for two
different periods and in Fig. 3 of Lecolazet and Melchior (1977, p. 16) for observations from two gra-
vimeters. In both cases the method of Chojnicki was used to perform the harmonic analysis. A coloured

noise spectrum with importarnt contributions at the low frequencies and increased noise levels in the main

tidal bands are observed.

An incomplete description of the linear model arises for example when earth tide measurements
from areas affected by shallow water loading are analyzed, thus introducing non-linear waves which dis-
turb the astronomical components. Non-linear waves can also be generated by a non-linear response of

the instrument and by inhomogeneities in the site geology. The fact that these shallow water waves ac-
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tually disturb the records at the station Dourbes (140 km from the North Sea) is clearly demonstrated

in Fig. 11, where we show the residual power spectra for the method of the Markov estimation, Chojnicki’s
method and the two modifications of the method of Chojnicki. The autocovariances for lags up to
m=1024 are calculated from n = 8192 observations with sampling interval At = 2 hours for Fig. 11

a, b, c, thus giving the frequency resolution Af=1/4096 cph and the equivalent number of degrees of
freedom 2n/m =16 . Fig. 11 d corresponds to the parameters m = 1024 ,n=75970, At=3h , Af=
1/6144 cph. Figure 12 shows the periodogram of the residual series for the least squares method of
Section 9 (modified Chojnicki’s method, sliding least squares), computed from n = 4096 data with
At=2h and giving a frequency resolution Af=1/16384 cph. For the identification of the shallow

water constituents the terminology of Rossiter and Lennon (1968) is used.

From Fig. 12 it is evident that the noise is far from uniform and it is maximum in the tidal wave
bands in which we are precisely interested. Except for a small S; the diurnal group of tidal lines appears
to be adequately represented in the linear model and the noise is low in.the D-band (possibly due to the
numerical method itself). The same conclusion is reached for the Markov estimation, but Figs. 12 b and
12d show exactly the opposite effect. The general impression for the diurnal band is of an increased
background noise, almost certainly of meteorological origin and there seemto be no significant consti-

tuents other than those derived from the harmonic development of the tide-generating potential.

The largest residual power in Figs. 12 and 11c s found in the semi-diurnal band and a number
of lines surrounding M, is indicated. Their position in the spectrum suggests that they may be genera-
ted by modulations of M, by long period terms, i.e. transient equivalents of OP, and MKE, which
are the pair of lines representing semi-annual perturbations of M, . Also lines at the frequencies of the
waves MNS, (and OQ,), MSN, (and KJ,), 25M, and SKN, can be identified as peaks on the pe-
riodogram. We also note non-negligible residual power at the frequencies where the tidal waves 2N, + y, ,
N, + v, and especially L, are situated, respectively disturbed by 2ZMK, , 2ML, and 2MN, .

In the ter-diurnal and quarter diurnal bands the background noise is fairly low and the waves
SK3 , MN, , M, and MS, can be identified.

Table 9 shows the magnitudes o; of some important non-linear waves in percentages of the
observed amplitude of the wave M, for the oceanic tides at the Ostend harbour (Melchior et al, 1967).
The corresponding coefficients o denote the amplitudes of the residual waves in percentages of the
observed magnitude of M, for the earth tide observations and they are obtained from e periodo-
gram of Fig. 12. Tt is clear that the non-linear terms affect the earth tide observations by shallow wa-
ter loading for the station in question (140 km from the North Sea). The amplitude of the wave M,
is about 0.5% of the observed amplitude of M, ; the residual amplitudes in the astronomical compo-
nents 3N, , 2N, , N, and 7, are about 0.4% of M, , while the residual amplitudes in M, and L,
are estimated as 0.8% of M, . Much of the variance of the noise process therefore goes into these non-
linear disturbances; the shallow water constituents not coinciding with the astronomical components
could be included into the harmonic analysis, but the perturbations at the tidal frequencies constitvte

a problem.

11. Results for the nearly diurnal free wobble.

Tesseral forces of the diurnal tides generate the precession-nutation torque, which tends to

rotate the equator towards the ecliptic, thus creating core motions with respect to the earth’s mantle.



5208

The hydrodynamical theory demonstrates that a resonance effect due to these motions in the liquid

core is imposed on the tidal waves in the vicinity of K; ,and a resonant amplification of the ampli-
tudes factors as a function of frequency takes place. The resonance frequency has been calculated

for a few earth models and it is found to be very near the'solar wave ; . The tilt factors v for four
theoretical models, together with the results of Table 7 and the values obtained by Melchior (1978,
Chap. 13). are given in Table 10 : MO, is the Molodensky model 1 (liquid, homogeneous core), MO,

is the Molodensky model 2 (inner core), JV; is the Jeffreys-Vicente model 1 (homogeneous, incompres-
sible core with central particle) and JV, is the Jeffreys-Vicente model 2 (Roche density law); w,

stands for the associated resonance frequency (Melchior, 1978). The columns P.Y.S. and T.S. give the
theoretical results of P, — Yu Shen and Mansinha (1976) and T. Sasao et al (1977) respectively.

The results of the observations are in good agreement with the theory of the dynamical effects
of a liquid core on the principal diurnal waves O; , Py , Ky . A nearly diurnal resonance effect und-
oubtedly exists, but the factors ¥(O; )/v(K;) and [1—(0;))/[1 —x(K;)] are significantly different
from the corresponding factors for the theoretical models.

As to the exact location of the resonance frequency the observations are actually controversial.
Since the wave O, is relatively far from the resonance frequency the tilt factor y(O;) must be practi-
cally insensitive to the exact structure of the resonance band. It seaxs that ¥(O;) is systematically
somewhat smaller than the value predicted by the models, while ¥(K;) is slightly larger. A value
¥(01)[7v(Ky) = 0.914 can be explained by a Molodensky model 2 with w, =1 5°.060 ; this in turn gives
¥(0,) = 0.686 , 7(Ky) = 0.756 , ¥(O1 )/7(K,) = 0.91 and [1=7(0;)l/1 = 7(K;)]=1.29. In this res-
pect w, should be slightly shifted to the lower frequencies; however, this value for. w, would give
even smaller values for the tilt factors for the waves ¥, and Q; .

The comparison of Tables 1 and 2 teaches that the value of ¥(¥;) can be drastically changed
when even only a small amount of data is rejected from the observations. This effect should impose
stringent restrictions in the interpretation of the observational results as they are obtained at present.
All harmonic analyses in this study indicate quite large ¥(¥;) and y(¢1 ), supporting the idea that

‘the resonance frequency is displaced towards the higher frequencies, but this would yield:smaller
values for ¥(K,). Alarge 7(@;) and relatively small ¥(K,) is reported by Blum et al (1973), but
our results are not so coherent from this point 6f view. It is a matter of a fact that the observations
are not sufficiently accurate to determine the location of the resonant frequency but, nevertheless,
the ideaturns up that the resonance band is more complicated in its structure than is indicated by
the theory of Molodensky (Sasao et al, 1977).

With the exception of the core resonance the amplitude factors are expected to be a smoother
function of the frequency than the corresponding parameters for the oceanic tides. All analyses clearly
indicate that the results in the semi-diurnal band are anomalous for the waves €, , uy , ¥; , Ay , Ly and
T, . This shows once more the presence of the loading signal, of non-linearities and of perturbations of
non-tidal origin.
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Wave group

115119
124-126
127-129
133-136
137-139
143-145
146-149
152-155
156-158
161-162
163-163
164-164
165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-226
227-229
233-236
237-239
243-245
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Standard deviation D 2.75, SD 2.06 , TD 0.45 ms
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Table 1

Method Venédikov without the application of the test

Wave

SIGMQ1
201
SIGMA1
Q1
RH¢1

¢l

TAU1
Np1
KI1
Pl
P1

S1

K1
PSIL
PHIL.
TETA1
71
Sp1
PPl
NU1

2
ETA2
%

b
7
N

M3

v

0.6145
0.5193
0.2200
0.5965
0.4817
0.6484
1.1133
0.6508
1.1102
0.6650
0.7156

v D
T
£

y.,
o
[aw]

Pt DD

Ut \;'n

P
O
[
[N
o

NGO
CR N e T N

0

3 ke

bt w0k
Tk DY U

S 0.1142

Number of days 3194 (1/1/1969-31/12/1977)
(0, )/v(Ky) = 0.8701

Ay

0.4222
0.1283
0.1056
0.0164
0.0856
0.0031
0.2343
0.0356
0.1989

0.0067
0.4106
0.0022
0.2778
0.1575
0.2010
0.0385
0.2348
0.0594
0.3111

0.4101
0.1722
0.0492
0.0405
0.0063
0.0329
0.0012
0.1566
0.0380
0.0420

K

— 84.69
—1.90
- 17.85
5.30
14.96
6.73
—41.15
6.26
6.97

- 5.97
3.07
18.98
—0.42
—0.83
— 22.20
12.66
0.87

- 28.29
— 8.46
28.92

20.13
8.29
8.81

~ 6.10
4.92
10.85
3.58
48.27
12.50
3,77
— 3.46
—3.26
~18.96

— 57.77

8.04
8.20
—1.39

[1 — 7(0y)VI1 — 7(K;)] = 1.3799
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Table 2

Method Venedikov with the application of the test

Wave group Wave % Ay K Ay
115-119 SIGMQ1 0.6605 0.3657 —83.14 31.72
124-126 2Q1 0.4814 0.1113 —6.27 © 13.25
127-129 SIGMA1 0.1829 0.0916 8.31 28.68
133-136 Q1 0.6033 0.0142 5.25 1.35
137-139 RH¢1 0.5058 0.0742 7.91 8.41
143-145 ol 0.6510 0.0027 6.59 0.23
146-149 TAU1 0.8295 0.2034 - 37.70 14.05
152-155 No1 0.6630 0.0309 4.58 2.67
156-158 Ki1 0.9605 0.1725 5.65 10.29
161-162 Pi1 0.6305 0.0991 2.93 9.00
163-163 P1 0.7097 0.0058 2.39 0.47
164-164 S1 2.1067 0.3561 25.61 9.61
165-165 K1 0.7450 0.0019 —0.27 0.14
166-166 PSI1 0.5597 0.2410 —0.52 24.85
167-168 PHI1 0.8902 0.1367 —11.35 8.80
172-174 TETA1 0.5984 0.1744 17.85 16.70
175-177 J1 0.6090 0.0334 1.26 3.14
181-183 S¢l 0.7666 0.2036 —19.07 15.22
184-186 (ol 0.5360 0.0515 —10.75 5.51
191-195 NU1 0.4862 0.2695 28.93 31.75
215-226 3N2 0.8953 0.2099 19.89 13.44
227-229 EPS2 1.2911 0.0881 4.51 3.91
233-236 2N2 0.8431 0.0252 7.59 1.71
237-239 MU2 1.1990 0.0207 — 5.65 0.99
243-245 N2 0.8256 0.0032 4.34 0.22
246-248 NU2 0.7782 0.0168 6.72 1.24
252-258 M2 0.8152 0.0006 3.40 0.04
262-264 LAMB2 1.0894 0.0800 46,98 4.21
265-265 L2 0.8930 0.0194 14.18 1.24
267-272 T2 0.8079 0.0215 4.13 1.52
273-273 S2 0.8243 0.0013 - 3.18 0.09
274-277 K2 0.8158 0.0043 — 2.87 0.30
282-285 ETA2 0.7308 0.0731 —13.06 5.73
292-295 2K2 0.4024 0.2008 —49.93 28.59
335-347 0.5901 0.0717 10.95 6.96
353-365 M3 0.8760 0.0198 8.26 1.30
375-375 1.0477 0.1315 —4.71 7.19

Standard deviation D 2.37 , SD 1.05, TD 0.41 m seca
Number of days 3140 (1/1/1969-31/12/1977)
(0, )/v(K;y) =0.8738 [1—(0)I[1 —¥(K,;)]=1.3686
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Wave group

115-119
124-126
127-129
133-136
137-139
143-145
146-149
152-155
156-158
161-162
163-163
164-164
- 165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-266
227-229
233-236
237-239
243-245
246-248
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Wave

SIGMQ1
2Q1
SIGMA1
Q1

Rol

o1

Topl
N1

KI1

PI1

P1

S1

K1

PSI1

FI1

TETAL
J1

Sp1
Lo}
NU1

3N2
EPS2

- 2N2

MU2
N2
NU2
M2
LAMB?2
L2
T2

S2

K2
ETA2
2K2

M3

Band - pass filtering with overlapping

Y

0.7289
0.4974
0.4146
0.6068
0.5336
0.6522
0.7832
0.6452
0.8092
0.6142
0.7167
1.7132
0.7446
0.6264
0.7733
0.6118
0.6246
0.5705
0.5762
0.4367

1.0019
1.3164
0.8444
1.2122
0.8266
0.7964
0.8162
1.1038
0.7686
0.7957
0.8247
0.8076
0.6443
0.6829

0.5659
0.8776
0.9586
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Table 4

Ay

0.0688
0.0160
0.0126
0.0016
0.0082
0.0003
0.0199
0.0029
0.0163
0.0097
0.0006
0.0352
0.0002
0.0243
0.0139
0.0198
0.0038
0.0291
0.0076
0.0562

0.0502
0.0195
0.0046
0.0037
0.0005
0.0027
0.0001
0.0133
0.0033
0.0041
0.0002
0.0009
0.0183
0.0731

0.0110
0.0030
0.0248

Standard deviation D 2.27 , SD 1.70 , TD 0.70 mseca

Numbet of observations D 63151 , SD 62941 , TD 68582 (1/1/1969-31/12/1977)

¥(Oy )/v(K ) =0.8759

K

— 58.22
—-9.75
—1.69

7.07
12.18
6.18
—12.60
3.08
—2.33
9.97
1.47
23.44
+0.03
7.54
—2.01
4.95
—1.49
3.21
0.60
11.39

19.56
0.30
5.47

— 596
4,02
8.42
3.31

46.97

11.03
4.65

—3.13
—2.86
—18.75
— 60.90

13.24
8.22
4.41

[1 — 7(0))/[1 — ¥(K,)]=1.3618

Ak

5.41
1.84
1.74
0.15
0.88
0.02
1.46
0.26
1.16
0.91
0.05
1.18
0.01
2.22
1.03
1.85
0.35
2.92
0.76
7.37

2.87
0.85
0.31
0.18
0.04
0.20

- 0.01

0.69
0.25
0.29
0.02
'0.06
1.62
6.13

1.11
0.19
1.48

4.54
4.03
4.16
6.15
6.34
5.76
5.57
7.41
7.99
9.83
9.88
9.88
9.84
9.75
9.62
6.63
5.89
3.71
391
3.01

2.76
2.90
5.35
5.80
8.02
8.28
9.83
9.74
9.40
5.49
4.99
3.98
2.50
2.86

7.02
6.59
5.79



Wave group

115119
124-126
127-129
133-136
137-139
143-145
 146-149
152155
156-158
161-162
163-163
164-164
165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-226
227-229
233-236
237-23%
243-245
246-248
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Standard deviation 2.53 mseca

Wave

SIGMQ1
201
SIGMAL
Q1

R¢1

61

Tol
N1

KI1

Pil
P1

LAMB2
L2

T2

52

K2
ETAZ
2K2

M3
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Table 5

Markov estimation

Y
0.8571
0.7752
0.4565
0.6074
0.5072
0.6536
0.8393

0.6917

0.7166
0.6728
0.7193
2.1580
0.7473
0.6239
0.7307
0.6416
0.6194
0.7375
0.5524
0.6163

0.8666
1.3202
0.8326
1.2094
0.8272
0.7773
0.8167
1.0545
0.8972
0.7925
0.8259
0.8189
0.7459
0.5907

0.5909
0.8745
1.0756

Ay

0.2782
0.0829
0.0680
0.0103
0.0534
0.0018
0.1401
0.0204
0.1134
0.0628
0.0037
0.2226

0.0012

0.1499
0.0846
0.1032
0.0196
0.1121
0.0281
0.1353

1 0.1083

0.0459
0.0134
0.0110
0.0017

0.0091 -

0.0003
0.0431
0.0104
0.0114
0.0007
0.0023
0.0376
0.0994

0.0622
0.0176
0.1172

Number of observations 75698 (1/1/1969-31/12/1977)
Y(01)/v(K; )= 0.8746

—73.51
—45.05
- 16.69
6.37
—4.66
6.54

— 33.62
12.23
0.09
22.51
2.38
31.28

- 0.19
0.40
2.58
17.30
— 0.26
—36.91
2.06
22.21

—23.21
- 291
1.94
—4.96
3.91

— 3.56
3.38
44.54
19.02
5.84
~3.23
— 3.05
—12.63
— 47,94

14.56
7.32
3.26

(1 =0, ML — (K )]=1.3708

Ak

18.59
6.13
8.53
0.97
6.03
0.16
9.56

1.69

9.07
5.34
0.29
5.91
0.09
13.77
6.64
9.21
1.81
8.71
2.91

}”A
[N
(83
g

7.16
1.99
0.92
0.52
0.12
0.67

0.02 -

2.34
0.67
0.82
0.05
0.16
2.89
9.64

6.03
1.15
6.25

1.08
0.59
0.62
1.01
1.01
0.59
0.54
1.15
1.26
1.54
1.55
1.55
1.54
1.53
1.52
1.31
1.28
1.23
1.22
1.07

1.29
1.33
1.14
1.08
1.57

1.74

2.39
1.77
1.60
0.96
0.97
1.03
1.49
1.32

0.94
0.90
1.05



Wave group

115-119
124-126
127-129
133-136
137-139
143-145
146-149
152-155
156-158
161-162
163-163
164-164
165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-226
227-229
233-236
237-239
243-245
246-248
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Standard deviation 5.60 m seca

Wave

SIGMQ1
2Q1
SIGMA1
Q1

Ro1

o1

Tol
N¢1

K11

PI1

P1

s1

X1

PSI1
FI1
TETAL
j1

Sl

oluX 1
NU1

3N2
EPS2
2N2
MU2
N2
NU2
M2
LAMB2
L2

T2

S2

K2
ETA2
2K2

M3

5214
Table 6

Chojnicki’s method

v

0.9380
0.5031
0.4555
0.6064
0.5924
0.6548
0.6976
0.6998
0.8041
0.7082
0.7220
1.7459
0.7464
0.7427
0.6779
0.6693
0.6443
0.5241
0.5483
0.6309

0.9625
1.2685
0.8369
1.2152
0.8259
0.7966
0.8178
1.1151
0.8629
0.7787
0.8272
0.8202
0.7670
0.5283

0.5088
0.8797
1.1113

Ay

0.0789
0.0250
0.0208
0.0033
0.0175
0.0006
0.0482
0.0074
0.0420
0.0239

0.0014

0.0854
0.0005
0.0582
0.0329
0.0421
0.0080
0.0486
0.0124
0.0624

0.1003
0.0425
0.0126
0.0105
0.0017
0.0088
0.0003
0.0433
0.0106
0.0118
0.0007
0.0024
0.0403
0.1089

0.0884
0.0252
0.1758

Number of observations 59828 (1/1/1969-31/12/1977)
¥(0,)/v(Ky) = 0.8773

— 53.56
—4.06
7.24
7.22
7.70
6.32
—13.51
1.80
12.80
6.02

1.49
19.31
0.07
3.46
2.48
5.65
—0.27
—10.88
2.09
2.08

13.39
3.36
6.69

— 5.57
4,28
8.14
3.38

46.44

13.77
3.85

- 3.23
- 2,87
—10.82
— 55.66

16.48
6.97
12.07

[1 — 1(O0)V/L —¥(Ky )] = 1.3612

Ak

4.82
2.85

- 2.62

0.31
1.69
0.06
3.96
0.60
2.99
1.93

0.11
2.80
0.04
4.49
2.78
3.61
0.71
5.31

1.30 -

5.70

5.97
1.92
0.86
0.49
0.12
0.63
0.02
2.23
0.70
0.86
0.05
0.17
3.01
11.81

9.95
1.64
9.07

2.69
1.68
1.75
2.29
2.25
1.44
1.38
2.40
2.59
3.08

3.09
3.08
3.07
3.05
3.02
2.51
242
2.13
2.11
1.83

1.06
1.10
0,92
0.86
1.24
1.38
1.86
1.34
1.21
0.73
0.74
0.78
1.04
0.94

0.49
0.50
0.59



Wave group

115-119
124-126
127-129
133-136
137-139
143-145
146-149
152-155
156-158
161-162
163-163
164-164
165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-226
227-229
233-236
237-239
243-245
246-248
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Standard deviation 2.75 m seca
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Table 7.

Modiﬁed Chojnicki’s method (sliding least-squares).

Wave

SIGMQ1
2Q1
SIGMA1
Q1

Ro1

o1

To1
No1
K1l

PI1

P1

s1

K1

PSI1
FIl
TETA1L
j1

Se1

oloX A
NU1

3N2
EPS2
2N2
MU?2
N2
NUZ
M2
LAMB2
L2

T2

S2

K2
ETA2
2K2

M3

Y

0.8101
0.5151
0.3532
0.5954
0.5150
0.6517
0.9880
0.6515
0.8208
0.6603
0.7215
0.7613
0.7468
0.9396
0.8210
0.6762
0.6263
0.5025
0.5564
0.5824

0.9602
1.2767
0.8337
1.2068

- 0.8280

0.7867
0.8171
1.0325
0.8643
0.7876
0.8256
0.8170
0.7317
0.5356

0.5775
0.8963
1.0152

Ay

0.0374
0.0119
0.0099
0.0016
0.0083
0.0003
0.0230
0.0035
0.0199
0.0114
0.0007
0.0407
0.0002
0.0277
0.0157
0.0200
0.0038
0.0230
0.0058
0.0296

0.0477
0.6203
0.0060
0.00

0.0008
0.0042
0.0002
0.0207
0.0051
0.0056
0.0003
0.0011
0.0190
0.0514

0.0423
0.0121
0.0831

Number of observations 63188 (1/1/1969-31/12/1977)
(04 )/¥(Ky) = 0.8727

- 78.88
- 8.05
—0.84

7.62
17.88
6.55
—28.10
4.59
15.01
2.66
2.26
—9.60
—0.18
0.49
—18.32
9.91

- 0.93
—9.08
—1.19
—3.50

11.57
2.49
5.98

—5.12
4.30
8.63
3.36

46.56

13.41
3.85

—3.18
- 3.05
—12.05
—47.87

14.05
8.34
2.14

[1 — (011 — {ty )] = 1.3756

Ak

2.65
1.32
1.60
0.15
0.92
0.03
1.33
0.31
1.39
0.99
0.05
3.07
0.02
1.69
1.09
1.70
0.35
2.62

0.60

2.91

2.84
0.91
041
0.24
0.06
0.31
0.01
1.15
0.34
0.41
'0.02
0.08
1.49
5.50

4.20
0.77
4.69

1.01
0.65
0.68
1.07
1.08
0.75
0.70
1.42
1.57
2.03
2.05
2.06
2.07
2.07
2.06
1.82
1.78
1.81

1.82
1.67

2.98
3.06
2.58
2.46
3.63
4.00
5.41
4.03
3.64
2.08
2.10
2.22
3.23
2.81

1.16
1.04
1.13



Wave group

115-119
124-126
127-129
133-136
137-139
143-145
146-149
152-155
156-158
161-162
163-163
164-164
165-165
166-166
167-168
172-174
175-177
181-183
184-186
191-195

215-226
227-229
233-236
237-239
243-245
246-248
252-258
262-264
265-265
267-272
273-273
274-277
282-285
292-295

335-347
353-365
375-375

Standard deviation 2.94 m seca
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Table 8.

Modified Chojnicki’s method (high-pass filtering)

Wave

SIGMQ1
2Q1
SIGMA1
Q1

R¢1

o1

Te1

N¢1

KI1

PI1

4
4

S1

K1
PSI1
FI1
TETA1
Jj1

Sp1
p¢l
NU1

3N2
EPS2
2N2
MU2
N2
NU2
M2
LAMB2
L2

T2

S2

K2
ETA2
2K2

M3

v

0.6515
0.4874
0.5129
0.6034
0.5838
0.6537
0.8125
0.7093
0.7507
0.7023
0.7273
1.2453
0.7452
0.9180
0.6887
0.6387
0.6464
0.4173
0.5557
0.5332

1.0285
1.2353
0.8489
1.1883
0.8268

10.7925

0.8176
1.1070
0.8636
0.7941
0.8264
0.8170
0.6987
0.4710

0.6166
0.8878
0.9028

Ay

0.0972
0.0300
0.0249
0.0039
0.0206
0.0007
0.0568
0.0086
0.0493
0.0282
0.0016
0.1008
0.0005
0.0685
0.0387
0.0493
0.0094
0.0568
0.0145
0.0722

0.1161
0.0494
0.0147
0.0122
0.0020
0.0103
0.0004
0.0507
0.0126
0.0138
0.0008
0.0028
0.0467
0.1246

0.1027
0.0296

0.2063

Number of obscrvations 12192 (1/1/1969-31/12/1977)
(01 )/7(K, ) = 0.8772

K

—69.36
—3.78
5.01
8.34
14.50
6.25

— 26.09
1.91
12.12
14.58
1.78
14.83
—0.09
4.02
1.00
2.51
—1.82
— 3.60
2.84
8.39

16.53
1.62
5.11

—5.33
4.22
9.72
3.36

49.11

14.06
3.53

—3.24
- 2.79
—10.74
—59.28

23.43
8.05
6.68

[1— (O — (ks )]=1.3591

AK

8.54
3.53
2.78
0.37
2.02
0.07
4.00
0.69
3.76
2.30
0.13
4.63
0.04
4.28
3.22
4.43
0.83
7.82
1.49
7.76

6.46
2.29
0.99
0.51
0.14
0.74
0.03
2.63
0.84
0.99
'0.06
0.20
3.83
15.16

9.53
1.91
13.11

2.04
2.26
2.32
1.99
1.91
1.75
1.84
1.79
1.44
3.70
3.97
4.06
3.96
3.69
3.27
2.17
1.86
2.32
2.23
1.54

1.19
0.92
1.27
1.23
1.71
1.58
2.68
1.60
1.70
1.15
1.21
1.14
0.93
1.06

0.60
0.31
0.37
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Table 9 — The magnitudes of some non-linear waves.

Astronomical

Shallow water

COmpC'ﬂ%ﬂi ﬁ@in?@ﬁ@ﬁ@ &i ayi a,i/a '

3N, , €, 0Q, +MNS,  2.08 0.43 0.21

2N, [ 2MS, 0.42

N, , 7, ML, 0.46

M, OP, +MKS,  1.45 0.83 0.57

L, 2MN, 0.84

s MSN, +KJ, 170 0.34 0.20
2SM, 1.95 0.63 0.32
SK, 0.50 0.36 0,72
MN, 1.89 0.25 0.13
M, 5,84 0.50 0.09
MS, 3.58 0.08

0.30
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Fig. 1 - Power spectrum of the horizontal pendulum VM 28 EW.
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Fig. 2 - The function gj/go for the band-pass filter with f; =0.034 cph and f, = 0.047 cph.
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Fig. 5 - Band-pass filtering with overlapping. Autocorrelations of the observed residuals (a)

D-band, (b) SD-band, (c) TD-band.



5224

ij P;«
0 = I/VTK l “‘/r\ { /TA'\] ]
' 10 1 20 ! 30 ! 40
0.2 | : |
y k=12 k=24 ks 36

Fig. 6 - Markov estimation. Aujocorrelations of the observed residuals.
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Fig, 7 - Chojniki’s method. Autocorrelations of the observed residuals.
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Fig. 9 - Modified Chojnicki’s method (sliding least-squares). Autocorrelations of the

observed residuals.
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Fig. 10 - Modified Chojnicki’s method (high-pass filtering). Autocorrelations of the

observed residuals.
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Fig. 11a - Markov estimation; residual power spectrum.
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Fig. 11b - Chojnicki’s method; residual power spectrum.
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Fig. 11c - Modified Chojnicki’s method (sliding least squares); residual power spectrum.
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Fig. 11d - Modified Chojniki’s method (high-pass filtering); residual power spectrum.
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MgDP@L - PROGRAMME NUMERIQUE 'PERMETTANT DE REPRESENTER

DES MODELES TERRESTRES, PLANETAIRES ET STELLAIRES DE MANIERE

COHERENTE
Carlo Denis Aysel Tbrahim
Institut d'Astrophysique & Physics Department
Université de Liége M. E. . U.
Liége, Belgique Ankara, Turquie

1. Introduction

Dans une note récente (Denis & Ibrahim, 1980) nous avons attiré
‘1'attention sur la nécessité de pouvoir disposer, dans certains cas,
d'un moddle terrestre, planétaire ou stellaire représenté de manieére
entisrement cohérente, sous forme paramétrique simple de préférence,
et nous y avons fourni les algorithmes permettant dfarriver & une
telle représentation cohérente. Cette nécessité se présente notamment
lorsqu'on désire calculer les nombres de Love statiques ou guasista-
tiques, car dans ce cas un~paraméﬁre faisant intervenir le gradient
de densité peut jouer un rdle essentiel (Pekeris & Accad, 1972 3
Denis, 1979). Or, si la densité a 1'intérieur de la Terre est assez
bien connue et tabulée, le gradient n'en est généralement pas donné et
les valeurs locales adoptées par différents auteurs dans leurs calouls
d'oscillations et de déformations de marée varient parfois grandement
pour le méme modéle initial; paz ailleurs, il est souvent difficile
de savoir quelles sont exactement les valeurs qu'ils ont adoptées. Il
devient alors difficile de comparer leurs résultats et de juger s'ils

sont significetifs.

Dans ce qui suit nous présentons un programme numérique basé sur les
algorithmes publiés dans la note mentionnée. Ce progranmme est écrit en
langage FﬁRTRAN tel qu'il est accepté par tous les compilateurs FﬁRTRAN
du systime d'ordinateurs IBM 560/379; 1'adaptation & des ordinateurs

d'un type différent est aisée. Nous avons par ailleurs visé dans ce
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