MAREES TERRESTRES.

BULLETIN d'INFORMATIONS.

No 50

10 août 1962.

Association Internationale de Géodésie

Commission Permanente des Marées Terrestres

APPLICATION DE LA METHODE DES MOINDRES CARRES A L'ANALYSE DES

OBSERVATIONS DES MAREES TERRESTRES.

A. P. Venedikov

Académie Bulgare des Sciences, Institut de Géophysique.

1. Considérations théoriques.

Si l'on veut réaliser toute la possibilité de précision que présente un enregistrement des marées terrestres il est bien connu que l'on doit adopter pour l'analyse harmonique la méthode des moindres carrés. Elle assure la meilleure précision possible avec une estimation rigoureusement définie [1], sans exiger un travail de calcul excessif. Comme le montre l'analyse de la marée océanique [2,3] on ne doit effectuer les opérations les plus fatigantes constitution et résolution des équations normales - qu'une seule fois pour une durée d'enregistrement fixée. La présence de la dérive instrumentale ainsi que le nombre très grand des ondes de marée rendent complexe son application.

Le principe des moindres carrés a été employé par Horn [4,5], Matvéev [6] et dans la méthode de Suthons [7]. On préfère à présent les méthodes de combinaisons linéaires de Doodson [8], Doodson-Lennon [8,9], Lecolazet [10, 11] et Pertzev [12, 13]. Nous proposons ici une méthode fondée sur le principe des moindres carrés, quelques compromis étant faits à cause des difficultés signalées plus haut. En réalité il ne s'agit que d'un choix des combinaisons à appliquer aux lectures un peu plus précis que dans les méthodes de combinaisons linéaires citées ici On pourra même y trouver une analogie étroite avec la méthode de Lecolazet.

Soient L, $(t=0^h,\pm 1^h,\pm 2^h,\ldots \pm p^h)$ les lectures horaires d'un enregistrement de la marée gravimétrique. Nous proposons d'exécuter d'abord, pour chaque cinquième heure, c'està dire pour $t=t'=0^h,\pm 5^h,\ldots \pm 5^{mh}$ (m = (p - 24) : 2), les sommations

(1)

$$I_q^{(2)} = \frac{1}{16} [L_{t^*} - 4(L_{t^*+6} + L_{t^*-6}) - L_{t^*+12} - L_{t^*+2}]$$

Ce sont les combinaisons que l'on écrit en notation de Labrouste [14,10] 1/16. Z $\frac{4}{5}$ et 1/16. Z $\frac{3}{3}$. La première nous servira pour la détermination des ondes diurnes, la seconde pour les ondes semi-diurnes. Leurs facteurs d'amplitude $\rho_1^{(1)}$ et $\rho_1^{(2)}$ en i est l'index de l'onde, sont donnés dans le tableau I.

Ces combinaisons éliminent un polynome cubique quelconque et les ondes océaniques quart-diurnes, qui peuvent exister d'après Doodson [15] au moins dans les stations côtières. Représentons la dérive dans les lectures L_t comme une fonction du temps développée en série de Taylor autour du point t=t'. Il n'en resteront dans les équations (1) que les termes de l'ordre quatrième, sixième . . . Dans le tableau XIV on voit les parties relatives en $l_q^{(1)}$ et $l_q^{(2)}$ d'une dérive périodique. Il est donc clair que nous avons obtenu une élimination satisfaisante de la dérive.

On peut facilement vérifier que dans les différentes sommations (1), dans chacun des deux cas, ne participent que des lectures différentes. Alors nous pouvons traiter $l_{q}^{(1)}$ ainsi que $l_{q}^{(2)}$ par la méthode des moindres carrés comme s'il s'agissait d'observations indépendantes. Nous obtiendrons à partir de $l_{q}^{(1)}$ les ondes diurnes et à partir de $l_{q}^{(2)}$ les ondes semi-diurnes. Plus loin nous laisserons les index $l_{q}^{(1)}$ et $l_{q}^{(2)}$ en sous-entendant partout que les considérations sont les mêmes pour les deux combinaisons, respectivement pour la détermination des ondes diurnes et semi-diurnes. Ainsi nous aurons une diminution de cinq fois du nombre des observations. Cela est pourtant partiellement compensé parce que le poids de l_{q} est 3,66 si le poids de l_{q} est 1. Plus précisément par rapport aux ondes dont le facteur d'amplitude l_{q} l_{q} 1, le poids de l_{q} sera 3,66 l_{q} . Cette valeur est donnée dans le tableau XI.

Si v est la correction à l pour les erreurs d'observation, nous avons les équations

(2)
$$l_{q} + v_{q} = \sum_{i=1}^{n} \delta_{i} R_{i} \cos(\omega_{i} q + \phi_{i} + \kappa_{i}) \qquad (q = 0, \pm 1, \ldots \pm m)$$

où R_i est l'amplitude théorique multipliée par le facteur d'amplitude du Tableau I et ω_i est la vitesse angulaire par 5 heures. Nous considérons que c'est une expression précise, c'est-àdire que nous avons pris chacune des n ondes qui ont quelque importance. Ordinairement ces ondes ne sont pas séparables dans la période d'enregistrement traitée et d'autre part n est grand si bien qu'il n'est pas praticable de faire la résolution des équations correspondantes simultanées.

Prenons alors seulement les ondes principales qui sont séparables dans la période traitée. Supposons qu'elles soient au nombre de ν et que dans la numérotation de 1 à n en éq. (2) elles soient numérotées de 1 à ν . Nous désignerons cette numérotation par une lettre grecque α , β , γ . Ecrivons en place de l'équation (2)

(3)
$$l_{q} + v_{q} = \sum_{\alpha=1}^{\nu} (X_{\alpha} \cos \omega_{\alpha} q - Y \sin \omega_{\alpha} q)$$

$$(q = 0, \Rightarrow 1, \dots \pm m)$$

La condition des moindres carrés

$$(4) \qquad \qquad \bigvee_{q=-m}^{+m} v_q^2 = Min$$

nous conduit de la manière usuelle [2] à deux systèmes d'équations normales.

(5)
$$\begin{cases} \sum_{\beta=1}^{\nu} A_{\alpha\beta} X_{\beta} = f_{\alpha} \\ \sum_{\beta=1}^{\nu} B_{\alpha\beta} Y_{\beta} = g_{\alpha} \end{cases} (\alpha = 1, 2, ... \nu)$$

οù

$$\begin{cases}
f_{\alpha} = \sum_{q=-m}^{+m} l_{q} \cos \omega_{\alpha} q = l_{0} + \sum_{q=1}^{m} (l_{q} + l_{-q}) \cos \omega_{\alpha} q \\
g_{\alpha} = \sum_{q=-m}^{+m} l_{q} \sin \omega_{\alpha} q = -\sum_{q=1}^{m} (l_{q} - l_{-q}) \sin \omega_{\alpha} q
\end{cases}$$
(6)

(7)
$$A_{\alpha\beta} = \sum_{q=-m}^{+m} \cos \omega_{\alpha} q \cdot \cos \omega_{\beta} q =$$

$$= \frac{\sin(m+1/2)(\omega_{\alpha} - \omega_{\beta})}{2 \sin(1/2)(\omega_{\alpha} - \omega_{\beta})} + \frac{\sin(m+1/2)(\omega_{\alpha} + \omega_{\beta})}{2 \sin(1/2)(\omega_{\alpha} + \omega_{\beta})}$$

$$B_{\alpha\beta} = \sum_{q=-m}^{+m} \sin \omega_{\alpha} q \cdot \sin \omega_{\beta} q =$$

$$= \frac{\sin(m+1/2)(\omega_{\alpha} - \omega_{\beta})}{2 \sin(1/2)(\omega_{\alpha} - \omega_{\beta})} + \frac{\sin(m+1/2)(\omega_{\alpha} + \omega_{\beta})}{2 \sin(1/2)(\omega_{\alpha} + \omega_{\beta})}$$

Si $\overline{A}_{\alpha\beta}$ et $\overline{B}_{\alpha\beta}$ sont les coefficients des matrices inverses des équations normales c'est-à-dire si

(8)
$$\sum_{\beta=1}^{\nu} \bar{A}_{\alpha\beta} A_{\beta\gamma} = \begin{cases} 1 & \alpha = \gamma \\ 0 & \alpha \neq \gamma \end{cases}$$
$$\sum_{\beta=1}^{\nu} \bar{B}_{\alpha\beta} B_{\beta\gamma} = \begin{cases} 1 & \alpha = \gamma \\ 0 & \alpha \neq \gamma \end{cases}$$

la solution des systèmes (5) sera

$$Y_{\alpha} = \sum_{\beta=1}^{\nu} \bar{A}_{\alpha\beta} f_{\beta}$$

$$Y_{\alpha} = \sum_{\beta=1}^{\nu} \bar{B}_{\alpha\beta} g_{\beta}$$

$$(9)$$

Voyons maintenant ce que représentent X_a et Y_a par rapport aux éléments des ondes théoriques. Remplaçons l_a de l'équation précise (2) dans l'équation (6) en négligeant la correction v_a

$$f_{\alpha} = \sum_{i=1}^{n} \delta_{i} R_{i} \cos(\phi_{i} + \kappa_{i}) \sum_{q=-m}^{+m} \cos \omega_{\alpha} q \cdot \cos \omega_{i} q = \sum_{k=1}^{m} a_{\alpha i} \delta_{i} R_{i} \cos(\phi_{i} + \kappa_{i})$$
(10)

$$g_{\alpha} = + \sum_{i=1}^{n} \delta_{i} R_{i} \sin(\phi_{i} + \kappa_{i}) \sum_{q=-m}^{+m} \sin \omega_{\alpha} q \cdot \sin \omega_{i} q = \sum_{i=1}^{n} b_{\alpha i} \delta_{i} R_{i} \sin(\phi_{i} + \kappa_{i})$$

où l'on peut calculer a_{a_i} et b_{a_i} comme $A_{a\beta}$ et $B_{a\beta}$ d'après les équations (7) en y remplaçant β par i. Si nous désignons

(11)
$$\rho_{\alpha i} = \sum_{\beta=1}^{\nu} \overline{A}_{\alpha \beta} a_{\beta i}$$

$$\rho_{\alpha i}^{i} = \sum_{\beta=1}^{\nu} \overline{B}_{\alpha \beta} b_{\beta i}$$

nous obtenons en remplaçant f_a et g_a des équations (10) en équations (9)

(12)
$$X_{\alpha} = \sum_{i=1}^{n} \rho_{\alpha i} \delta_{i} R_{i} \cos(\phi_{i} + \kappa_{i})$$

$$Y_{\alpha} = \sum_{i=1}^{n} \rho'_{\alpha i} \delta_{i} R_{i} \sin(\phi_{i} + \kappa_{i})$$

Pour l'onde principale β a_{ai} et b_{ai} coincideront avec $A_{\alpha\beta}$ et $B_{\alpha\beta}$

(13)
$$a_{\alpha i} = A_{\alpha \beta}$$

$$b_{\alpha i} = B_{\alpha \beta}$$

Alors, compte tenu des relations (8)

(14)
$$\rho_{\alpha i} = \rho'_{\alpha i} = 0 \qquad i \rightarrow \beta \neq \alpha$$

Ceci veut dire qu'en (12) $\delta_1 R_1 \cos(\phi_1 + \kappa_1)$ et $\delta_1 R_1 \sin(\phi_1 + \kappa_1)$ seront multipliés par zéro pour les ondes principales. Par contre, pour l'onde a ils seront multipliés par 1. Toutes les ondes seront multipliées respectivement par un petit coefficient à l'exception de celles qui ont une période proche de la période de l'onde a. Dans ces conditions on peut remplacer dans l'équation (12) δ_1 et κ_1 par δ_a et κ_a et les mettre en évidence comme suit

(15)
$$X_{\alpha} = \delta_{\alpha} \cos \kappa_{\alpha} \cdot \xi_{\alpha} - \delta_{\alpha} \sin \kappa_{\alpha} \cdot \zeta_{\alpha}$$

$$Y_{\alpha} = \delta_{\alpha} \sin \kappa_{\alpha} \cdot \xi_{\alpha} + \delta_{\alpha} \cos \kappa_{\alpha} \cdot \zeta_{\alpha}$$
où
$$\xi_{\alpha}(\xi_{\alpha}^{i}) = \sum_{i=1}^{n} \rho_{\alpha i}(\rho_{\alpha i}^{i}) R_{i} \cos \phi_{i}$$

$$\zeta_{\alpha}(\zeta_{\alpha}^{i}) = \sum_{i=1}^{n} \rho_{\alpha i}(\rho_{\alpha i}^{i}) R_{i} \sin \phi_{i}$$

On en déduit les formules suivantes pour δ_a et κ_a

$$\frac{1}{\delta_{\alpha}^{2}} = \frac{\xi_{\alpha}^{2} + \zeta_{\alpha}^{12}}{X_{\alpha}^{2} + Y_{\alpha}^{2}} + \frac{\sin 2\kappa(\xi_{\alpha}\Delta\zeta_{\alpha} - \zeta_{\alpha}^{1}\Delta\xi_{\alpha}^{1}) + \sin^{2}\kappa(\Delta\xi_{\alpha}^{12} + \Delta\zeta_{\alpha}^{2})}{X_{\alpha}^{2} + Y_{\alpha}^{2}}$$

(18)
$$\operatorname{ctg} \kappa_{\alpha} = \frac{1 + \frac{\zeta_{\alpha}^{i} Y_{\alpha}}{\xi_{\alpha} X_{\alpha}} + X_{\alpha} \Lambda \xi_{\alpha}^{i} + Y_{\alpha} \Lambda \zeta_{\alpha}}{\frac{Y_{\alpha}}{X_{\alpha}} + \frac{\zeta_{\alpha}^{i}}{\xi_{\alpha}} + \frac{\chi_{\alpha} \Lambda \xi_{\alpha}^{i} + Y_{\alpha} \Lambda \zeta_{\alpha}}{\xi_{\alpha} X_{\alpha}}}$$

où $\Delta \xi_a' = \xi_a' - \xi_a$ et $\Delta \zeta_a = \zeta_a - \zeta_a'$. Posons en (15) $\delta_a = 1$ et $\kappa_a = 0$. Nous voyons que si nous avons analysé la marée théorique à la place de la marée observée, nous obtiendrons ξ_a et ζ_a' à la place de X_a et Y_a . C'est-à-dire que ξ_a et ζ_a' sont les nombres homologues de X_a et Y_a selon la définition de Lecolazet. Ici nous avons alors la déduction du principe des nombres homologues pour le calcul de δ et κ un peu détaillé; les formules (17) et (18) coıncideront avec celles de Lecolazet si $\Delta \xi_a'$ et $\Delta \zeta_a$ sont négligeables. Peut-être ces formules complètes auront-elles une importance pour les ondes plus petites.

On obtiendra l'erreur quadratique moyenne σ_1 de l_a par

(19)
$$\sigma_1^2 = \left[\sum_{q = -m}^{+m} 1_q^2 - \sum_{\alpha = 1}^{\nu} (X_{\alpha} f_{\alpha} + Y_{\alpha} g_{\alpha}) \right] : (2 m + 1 - 2)$$

Dans σ_1 ainsi calculé on inclut l'erreur provenant de ce qu'on a négligé les ondes secondaires dans l'équation (3). Cette erreur est cependant sans importance dans le calcul final de δ et κ grâce à l'introduction des nombres homologues. Cela veut dire que d'après (19) nous obtiendrons une valeur de l'erreur un peu plus grande qu'en réalité. Quoique nous n'ayons pas approfondi cette question il nous semble qu'elle n'a guère d'importance

Nous voulons remarquer ici que les grandeurs intermédiaires l_q peuvent être scrutées pour éviter une erreur sensible, ce qui est nécessaire comme l'a souligné Doodson [15]. Par exemple une combinaison pareille aux combinaisons de Lecolazet [16] pour l'interpolation dans les séries diurnes et semi-diurnes, d'après la suggestion de Melchior, nous montrera facilement chaque valeur extraordinaire. De même, comme les l_q sont indépendants on pourra calculer éventuellement plus précisément σ_1 avec cette combinaison.

L'erreur quadratique moyenne $\sigma_{\rm L}$ d'une lecture $\rm L_{\rm t}$ sera

(20)
$$\sigma_{L} = \sqrt{3,66}.\sigma_{1} = 1,91.\sigma_{1}$$

Les erreurs quadratiques moyennes de X_a et Y_a seront

(21)
$$\sigma_{\mathbf{x}_{a}} = \sqrt{\mathbf{A}_{aa}} \cdot \sigma_{\ell}$$

$$\sigma_{\mathbf{y}_{a}} = \sqrt{\mathbf{B}_{aa}} \cdot \sigma_{\ell}$$

Si l'erreur quadratique moyenne d'une lecture L_t est égale à l, l'erreur et le poids de X_α et Y_α seront respectivement

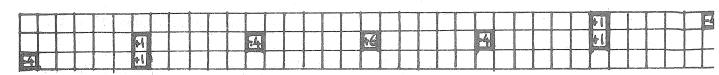
$$\sigma_{x_{\alpha}} = \sqrt{\frac{\bar{A}_{\alpha\alpha}}{3,66 \; \rho_{\alpha}}} \qquad \qquad \sigma_{y_{\alpha}} = \sqrt{\frac{\bar{B}_{\alpha\alpha}}{3,66 \; \rho_{\alpha}}}$$

(22)

$$P_{x_{\alpha}} = \frac{3,66 \ \rho_{\alpha}}{\overline{A}_{\alpha\alpha}} \qquad \qquad P_{y_{\alpha}} = \frac{3,66 \ \rho_{\alpha}}{\overline{B}_{\alpha\alpha}}$$

où 3,66 ho_{lpha} est donné dans le tableau XI.

Jusqu'ici nous avons parlé de l'analyse de la marée gravimétrique. Bien entendu toutes les considérations sont valables pour l'analyse des déviations de la verticale. Il faut remplacer le facteur δ par le facteur γ et prendre le développement harmonique correspondant


2. Application de la méthode à l'analyse d'enregistrements mensuels de la marée gravimétrique.

Nous voulons donner ici les indications et les tableaux nécessaires pour l'application pratique à l'analyse d'enregistrements mensuels gravimétriques de la méthode développée théoriquement au § 1

Nous avons choisi 11 ondes principales, séparables dans un mois S_2 , L_2 , M_2 , N_2 , $2N_2$, OO_1 , I_1 , K_1 , M_1 , O_1 , Q_1 . Ces symboles nous ont servi comme l'index α . Nous avons pris m=66, à qui correspond un enregistrement de 709 heures. Avec cette valeur de m les coefficients de la diagonale principale des matrices des équations normales sont les plus grands par rapport aux autres coefficients. C'est très important pour la précision et la séparation des différents groupes d'ondes.

Supposons que nous ayons un tableau contenant 709 lectures horaires consécutives, les heures en colonnes et les jours en lignes. La lecture centrale sera indiquée par q=0 et chaque cinquième lecture à droite par $q=1,\ 2,\ \dots$ 66 et à gauche par $q=-1,\ -2,\ \dots$ -66. A l'aide des grilles dans le schéma I, centrées sur les lectures indiquées, nous obtenons les grandeurs $16\ l_0^{(1)}$ et $16\ l_0^{(2)}$

Grille diume pour l(1)

Grille semi-diurne pour l(2)

Il est plus commode de ne pas diviser par 16. L'échelle du schéma I est : à un carré correspond un chiffre du tableau des lectures. On doit y découper les carrés avec +1, -4 et +6 et chaque lecture que l'on voit sera multipliée par ces coefficients.

Après cela nous formons $l_q^{(1)} + l_{-q}^{(1)}$, $l_q^{(1)} - l_{-q}^{(1)}$, $l_q^{(2)} + l_{-q}^{(2)}$ et $l_q^{(2)} - l_{-q}^{(2)}$ (q = 1, 2, ... 66) et d'après les formules (6) et avec les tableaux II et III 16 $f_{\alpha}^{(1)}$, 16 $g_{\alpha}^{(1)}$, 16 $f_{\alpha}^{(2)}$ et 16 $g_{\alpha}^{(2)}$. Ensuite, nous divisons par 8 et obtenons 2 $f_{\alpha}^{(1)}$,

Les tableaux IV et V sont les matrices des équations normales, multipliées par 2. Cette multiplication est sans importance et provient de ce que nous avons négligé le coefficient 2 dans le dénominateur des équations (7). Les tableaux VI et VII sont les matrices inverses, divisées par 2. La multiplication avec sommation de chaque colonne du tableau VI avec les colonnes de 2 $f_{\alpha}^{(1)}$ et 2 $f_{\alpha}^{(2)}$ et du tableau VII avec les colonnes de 2 $g_{\alpha}^{(1)}$ et 2 $g_{\alpha}^{(2)}$ nous donne $X_{\alpha}^{(1)}$ et $X_{\alpha}^{(2)}$ et $Y_{\alpha}^{(1)}$ et $Y_{\alpha}^{(2)}$ respectivement. On peut calculer X_{α} et Y_{α} seulement pour les ondes qui nous intéressent. Spécialement $X_{\alpha}^{(1)}$ et $Y_{\alpha}^{(1)}$ pour les ondes semi-diurnes $(\alpha = S_2, L_2, \ldots)$ ainsi que $X_{\alpha}^{(2)}$ et $Y_{\alpha}^{(2)}$ pour les ondes diurnes $(\alpha = OO_1, I_1, K_1, \ldots)$ sont sans aucune importance si l'on ne veut pas calculer σ_1 d'après (19).

Enfin on doit calculer les nombres homologues. Nous avons prévu 79 ondes, les mêmes que dans la méthode de Lecolazet. Les «argument numbers» de ces ondes sont donnés dans le tableau I. Le calcul nécessaire des amplitudes et des phases est décrit explicitement par Lecolazet [11]. Pour notre procédé on doit multiplier h $\cos \phi$ et h $\sin \phi$ par le facteur d'amplitude du tableau I ou bien dans le calcul des amplitudes prendre les coefficients relatifs multipliés par nous dans le même tableau. Dans nos tableaux l'ordre des ondes est inverse de celui des tableaux en [11]

Après cela avec R_i cos ϕ_i et R_i sin ϕ_i et les tableaux VIII et IX nous obtenons les nombres homologues ξ_a et ζ_a d'après (16). On peut calculer les nombres $\Delta \xi_a$ et $\Delta \zeta_a$ à l'aide du tableau X. On voit dans ce tableau que ces nombres ont un rôle négligeable au moins pour les ondes les plus grandes. Dans le calcul de ξ_a et ζ_a pour les ondes diurnes on doit prendre seulement la deuxième partie des tableaux VIII et IX, parce que dès la première étape nous avons une séparation presque parfaite des ondes diurnes par rapport aux ondes semi-diurnes. Quant aux ondes semi-diurnes, après la résolution des équations normales nous avons de même une séparation satisfaisante par rapport aux ondes diurnes. Néanmoins il faudra prendre quelques ondes diurnes, spécialement P_1 (i = 48).

Après avoir obtenu X_a et Y_a et ξ_a et ζ_a on en déduit facilement d'après (17) et (18) δ_a et κ_a

On peut calculer les différentes erreurs d'après (19), (20) et (21). On peut obtenir les erreurs en δ_a et κ_a ainsi qu'en chaque fonction de X_a et Y_a comme si X_a et Y_a étaient indépendants

3. Comparaison avec d'autres méthodes d'analyse harmonique.

Une comparaison entre deux méthodes d'analyse exige naturellement une étude approfondie sur matériel expérimental ainsi que théorique. Nous proposons une brève comparaison du point de vue seulement de quelques qualités théoriques.

Le tableau XII contient les erreurs quadratiques moyennes de X_{α} et Y_{α} d'après (22) et les valeurs correspondantes pour les méthodes de combinaisons linéaires. Les dernières sont empruntées à Lecolazet [17]. On y suppose que l'erreur d'une lecture est égale à 1. On voit que dans notre méthode il y a une petite amélioration de la précision. La méthode de Pertzev [12] donne des erreurs plus petites en K_1 et S_2 mais cette méthode exige une élimination préliminaire de la dérive.

Le tableau XIII contient les relations entre le poids de X_a et Y_a et le poids des valeurs correspondantes dans les autres méthodes. Les coefficients nous montrent combien de matériel d'observation de plus il serait nécessaire d'élaborer par une autre méthode pour obtenir la précision de notre méthode pour une onde donnée.

Dans le tableau XIV on voit que nos combinaisons éliminent mieux la dérive que les autres. Nous croyons qu'on peut en attendre une augmentation de la précision plus essentielle que celle montrée dans le tableau XII. Les données pour le tableau XIV ont été empruntées à Lennon [18].

Quant à la séparation des différents groupes d'ondes on voit que les coefficients des tableaux VIII et IX sont très proches des coefficients correspondants dans la méthode de Lecolazet [11]. D'après Melchior [19] cette séparation est satisfaisante. Nous n'avons pas pourtant une séparation parfaite des ondes semi-diurnes à partir des ondes diurnes. Tout de même par des considérations analogues à celles de Melchior on peut montrer que cela n'a pas d'importance. Sinon, comme les ondes diurnes sont déterminées sans l'interférence des ondes semi-diurnes, on peut facilement introduire des corrections analogues à celles de la méthode de Doodson.

Concernant la méthode des moindres carrés de Horn [5] on doit dire qu'elle assure théoriquement une meilleure précision. Il est peut-être préférable de réaliser l'approximation de la dérive par des polynômes cubiques en intervalles de 25 heures et 49 heures, 5 heures par 5 heures, par un polynôme même de degré fort élevé (jusqu'à 24) sur tout un mois. En outre ce qui n'est pas du tout décisif, mais qui a som importance, cette méthode est plus difficile pour la pratique et exige un calculateur électronique. La méthode de Horn ne procure pas des grandeurs intermédiaires que l'on pourra étudier spécialement.

En conclusion nous voulons ajouter que la méthode exposée théoriquement au § 1 peut être employée en pratique pour l'analyse d'enregistrements plus longs qu'un mois et aussi quand les lectures sont prises sur des intervalles différents de 1 heure. Le premier cas est de plus en plus nécessaire par suite de la création des stations permanentes. Quand on dispose de lectures par un intervalle inférieur à une heure, par exemple 30 minutes, la méthode peut être appliquée en décalant les combinaisons (1) d'un intervalle correspondant inférieur à 5 heures, par exemple 2 h 30 m. Cela sera utilisable peut-être dans les nouveaux procédés d'enregistrement projetés par Longman [20] et Melchior [21].

Tableau I - facteurs d'amplitude facteurs d'amplitude facteurs d'amplitude i de la combinaison 1/16.Z₃

(1) 4

facteurs d'amplitude i de la combinaison 1/16.Z₃

(1) (2)

et coefficients relatifs multipliés par i et i

index	index	Argument number Doodson	(2) § i	coef. rel. 48	(1) S i	coef.
	1 2 3 4	255 465 455 275 575 565	.000 1.000 1.000	140 320 186 1712	* 1 - 1 - 200m (1 - 7) (1) (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	
S_{L}	5 6 7 8 9 o	555 274 554 273 555 272 556 265 665	1.0000 1.000 1.00000 1.0000 .999	5753 177 21179 1240 141 320	.0000	
L	10 11 12	265 655 555 455	.999 .9988	1282	.0000	
M,	13 14 15	268 655 256 554 255 555	.998 .995 .99435	334 137 45149	.0001	
	16 17 18	545 254 556 253 755	.9943 .994 .994	1683 156 135		
\mathcal{N}_{z}	19 20 21	247 455 245 655 645	.9879 .9867 .987	1682 8577 320	. 900/	
2 N.	22 23 24 25 26 27	555 237 555 235 755 655 227 655 225 855	.987 .9776 .9759 .976 .964 .962	421 1557 1122 114 323 125	.0023	
	28 29	195 465 455	.245		. 939 . 939	137 292
001	30 31 22	105 5 7 5 565 55 5	· 513 · 213	3 25 506	972 9717 9719	212 1009 1577
	33 34 35	355 183 555 175 555	.312 .308 .282		.972 .976 .992	253 480 239 582
J	36 37 38	465 . 455 173 6665	.282 .282 .278	6 36	.992 .9925 .994	2942 111
	89 40 41	655 167 555 166 554	.278 .257 .254		.994 1.000 1.000 1.000	568 756 423 154
K,	42 43 44	105 575 565 555	.251 .251 .251	1803 13369 265	1.0000 .99996 1.0000	7182 53045 1050
	45 46 47	545 164 556 554	.252 .250 .250	4361	1.000 1.000 1.000	428 147 17584
	48 49 50	168 555 545 162 556	.248 .248 .246 .228	49CT	1.000 .9998 .996	199 1029 123
	51 52 53	157 465 450 155 665	. 228 . 224 . 224	664	. 996 . 994 . 9944	564 590 2947
M,	55 56	655 555 - 455 445	.224 .224 .224		.994 .9942 .994	657 1059 196
	57 58 59	153 655 147 566 147 555	.224 .202 .202		.092 .979 	276 105 - 481
	60 61 62 63	146 554 146 7 5 5 655	.200 .198 .198		978 976 976	112 237 105
0,	64 65 66	555 545 525	.198 .198 . 198	7462 1410	97574 9757 976	36775 6932 213
	67 68 69	144 556 143 755 137 455	190 180 177	243	.974 .972 .9498	127 110 1302
Q	70	445 435 655 6 45	.175 .173 .173	1248	.950 .945 .9449	245 68 20 1285
	73 74 75	555 127 555 545	.173 .154 .154		.945 .9094 .909	199 1048 198
	76 77 78	125 755 745 117 655	.151 .151 .133		.903 .903 .859	863 163 239
	78 79	115 855	.130		.821	92

Tableau II - cos wo

																		~ · ·	_																	
	o"	ः (० (० (०	eri.	-400C	un ଓଡ଼ ଓଡ଼	ි භ ශ ්	20.50	9097	-047	1000 1000	© © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	08	က ပာ ပာ တ	3794	(Y)	2020 2020 1	\$250 P	-1	00	(O)	άΣ. Ga	2450	41.00 11.00	9580	ଚଞ୍ଚର	S 200 -	-7813	ψ '	G. (3)	5000	(1)	r-	1557	0ずを3		-2002
	0	5274	-7727	-8682	4742	9340	5061	-6318	-8461	-0243	00 00 00 00	ତ୍ର ଓଡ଼ ଅନ୍ତର	4636	100 100 100	2273	8377	6027	-2012	-0020	-4106	27.00	0040 040	-0854	2593-	\odot	ଓ ଓଡ଼ିଆ ପ୍ରସ୍ଥର			- 80 25 50 25	12324	20.47	රු රා රා රා	30.60 -	47005	-6527	C.3
	<u> </u>	10 00 00 1	71 0	ପ୍ରତ୍ରହ ପ୍ରବ୍ରହ	9567	0105	£009€-	150255	თ თ თ დ	9426 9486	-0818	-2627	-5477	6880	9287	<u>-</u> 0789	10200	0 5 5 7 1	0 0 0 7	0123	1160	1283-	-4758	(O) (O) (O)	5542	157	တုံ့	ξ.,	CA		(1) (1) (1) (1)	10 20 10 10	\$ 00 m	7.540	19 (A)	S S S S S S S S S S S S S S S S S S S
	K.	-6578	7858	2004	-8777	24 00 00 1	1288	00 00 00 00	6017	-6185	-9176	1460	25675	2577	18113	-7723	4171	9898	0861	-0440	(A)	0 10 0 0	2003	1020	8488	-3173	୍ଟ୍ର ଜୁନ୍ତ ଜୁନ୍ତ	7442	-4557	0245-	-0432 -0432	জ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ হ	230%	0000	16807	
	H	(0) (0) (0)		16864	₹88. •	2652	ලා ලා ලා ලා	1525	27°3°	1 1 10 10 10 10	7074	8888	18562	3000 1000 1	-0573	8 50 8 8 50 8	4604	-77717	-7834	4440	हुन (0) (0)	7980-	07 10 00 03	-37.35	8250	7203	5277	3410	1340	8228	2820	73731	- 9220	6065	S048	-2264
	00	다. 다. 다.	1984-	-7236		0908	-2711	18881	2020-	9775	3662	0368=	-6440	6508	8545	-3744	-6756	0550	2565	2625	250S-	-5567	7297	7327	-4733	-9458	1675	10000	1557	1 0 4 0	-4628	8304	7215	-5666	-9048	2740
	212	7500-	\$20 \$20 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$40 \$4	4662	(J)	<11	୍ଦ	7.7	-0	တ တ တ -တ -က -	7495	1,895	15070	0.55	19167	4378	2519	-8203	0000	00 00 00 00 00 00 00 00 00 00 00 00 00	9750	5047	-6772	8088	0 0 0 0 0	-2305	8645	-0884 -0884	6311	0243	-6681	(D)	- 60	- co	\circ	. 0
		0889	F -	$-\circ$	120	()	7202	0,	· • •	$\widetilde{\mathbb{Q}}$	3597		୍ଦ ଓଷ୍ଟ			4827		ල ග ල ග	00 7 7 0 1	-0012	64 65 69	် တို့ တို့ တို့ ၁၈	9770	-4807	1577	7299	-0956	8436	0	40	23	23	2		10	9022
	Mo	1 2000 C	7) (Q) (Q) (Q	1 (O)		2000 2000 2000 2000 2000 2000	l in) ((),) (G) (O)) (O) (O) (I	L CO	-3678		07/2	00 00 00 00 00	9.60	24472	1 10	1 00	1 . e	0 0) (C	-0748	0, 00 0, 00 0, 00 0, 00	1000	00 420 10	1070	0054	5708	0.0) <u>(C</u>	ιŌ	0856		00
1	H ₂	100 E	1 5	ි () - ලි 2 , ල්) () (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0) (C)	6 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10	9 C) (¥ } (¢ }) (<u>C</u>) (LC	5.0	I . C		0 0. 0 00 0 00 0 00) & O		07.60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	4609		1000 0000 0000	4400) . O	4774	2204	2572	rα	0.000 0.000	4 E)) (C	0 C	3013

6

יוייייי לי אססלמטל

•																19 19)	679	ा े 9 हैं	\$5% 5% \$5% \$1%		60 60 10 10													
O T	C	9204	7195	-3580	19999	42 533	6686	0 0 0 14 0 13 0 13	0706	-8905	-7668	2912	00 00 00	4862	-6144	-9664	1777	8562	\$102	2227	-9844	-5467	5570	9821	2106	-8174	-6497	153	9695	6046	-4970	-9930	-2792	
0	C	0380	6504	-4869	9881	-1981	8507	6181	-3044	00000	-3883	7298	6943	-1097	-9703	-5631	5799	9652	0894	-9033	-7157	4070	9579	2849	=6003	8388	2180	9910	4692	-6658	-9307	0204	9449	
	0	929	57.40	-6081	-9401	0422	9655	5391	-6410	0240	0842	9756	5030	-6729	0306-	1262	9840	4661	-7034	_ පිහිටු	1680	9088	4283	-7328	-8695	2094	9992	3890	-7609	-8479	2504	9886	3507	-
R	0	3998	40000	-7147	9258	2761	(O) (O) (O)	2345	-8800	0000 0000 1	5307	8550	-0430	6946-	-4560	7441	8360	-3171	6266-	1925	9588	6520	-5667	-8414	0859	9852	4172	-7721	-8116	3576	9942	1501	-9175	
H	0	8448	4001	-6068	-7465	4945	9534	4250-	46000	-3200	8596	6794	-5754	-9202	1905	8 6 6 6 6	2277	-9045	-6061	6510	6785	-2635	-9971	12885	9411	5273	-7207	-8287	3740	9851	0380	8698-	-4435	2002
0	0	6985	3191	-6837	6709-	6881	8274	-4206	-8634	1080	ି ୭୫୧୫	27 00 00	-0295	-5144	7631	7612	-5170	-9284	2168	9984	1061	-9641	62179	8250	6829	-6072	-8823	3219	9864	-0030	-9873	-3163	8851	こしつに
SIS	0	6497	ି ଓ ଷ୍ଟର-	8520	-3075	-3846	8921	-9717	5851	0821	-7099	8256	-8061	2284	4591	19262	9490	-5167	-1637	7654	-10000	7548	-1476	-5304	9540	-9200	4446	2441	-8156	9999	-6984	0658	5882	_075A~_
N	0	6128	9898-	9177	4016	-1566	7290	9688	8442	-3386	-3092	8273	0888-	7493	-1870	-4543	9050	-9758	6371	-0306	-5882	9604	9826-	5086	125 200	-7075	888	-3604	3675	2797	-8094	9000	-7700	2172
2	0	27.47	-9406	9648	-6385	0808	5072	-9104	9828	-6962	7200	4364	-8742	၁ ု ၂ ၁	-7534	2387	3628	-6324	7000 0000	-8038	3158	2869	-7853	9 9 9	-8489	8008 8008	2081	-7331	8068	-8865	4635	1288	-6762	9767
27	0	10 10 10	-8042	0 0 0 4	-7724	3125	2445 3	-7254	9812	10052	00 00 07	-0709	-4739	8716	9868-	8125 25	-3721	-1750	6748	-8650	9 2 2 2 2 3	-6453	1414	4103	-8346	8660	-8545	4437	1047	-6206	9440	-9740	7016	-2113
82	0	2000	-8660	10000	- 8660	2000	0	-5000	0998	-10000	0998	-2000	•																			e de la companya de l		

. 0	00 00 01) O1) 41) O2) (C) (C)	4	(U) (U) (D) (D)	M M	1200 L	90	0124	(a) (b) (c) (c)	7108	୍ଦ୍ର (୧୯) (୧୯)	0000	-4178	6778	0777	0 0 0 0	් ජි ග්ර ග්ර ග්ර ග්ර	-7587	3020	9536	4752	4. 4. 4.	-9631	-1288	(A)	8028	400	-8893	(A)	(U)	2525
Ö	- arcic	1 200	2779	0613	10 10 10	(1) (2) (3)	2000	-5694	7.436	8850	-1300	12731	1279	නිරමය දිරි	0000	0630	00	-7013	4256	ି ଅଧିକ ଅଧିକ ଓଡ଼	200 200 200 200 200 200 200 200 200 200	\$12 \$24	-8285	2380	9930	4509	-6808	05330	0408	9513	6188	1892	0
	-8247	0 0 0	(1) (1) (1)	3108	-8128	-8001	00 00 01 03	(O) (D) (D)	2704	-8367	27.1.	STE	00 200	2207	-8550	12.000	4034	(7) (7) (3)	79	0.250	-7150	4.0	0875	1468 1468	7888	-6881.	4850	00000	0707	15 P	0000	10 53 53 10	5065
À	6015	9259	11200	Ciar	-3778	100 CO	7887	00000	19867	-1075	(O)	5844	୍ର ଅନୁଷ୍ଟର ଜଣ୍ମ	80081	17.	8935	(1) (2) (3)	-6238	700 100 100 100	4. 60 00 00	(1) (1) (1)	0647	~ \$433	-3430.	0899	7068	12124	500000000000000000000000000000000000000	000000	100	01	00	N CO
H	7774	14610	-9642 5452	0577	60 60 60 60	3558	(7) (7) (8)	3002	3273	4400	000	0000	12001	8877	6850	(D)	0888-	2460	(1) (1) (1) (1)	17	-0276	-5532	5327	8484	13364	0765	-0762	40 40 01	477.8	-7594	70071	(A)	10 10 10 10
00	2059 *	9257	42 23 53 50	9623	-1120	000000000000000000000000000000000000000	-2110	8303	3	-7550	0000	510	07.70		0000	1001	0703	4402	-8307	0000	8509	8803	-3247	9839	0028	9828	10	\$ 000 P	1009	5924	0700	0000	2-1 20 10
23.5	5.8647	(D) (D) (D)	\$25 \$25 \$25 \$35 \$45 \$45 \$45 \$45 \$45 \$45 \$45 \$45 \$45 \$4	5804	2003-	(C)	01.02	~6620	(N) (O) (O) (O)		2820	10 00 00 00	(n) (n) (n) (n)	SC738	-5720	-0893	7273	(M)	7964	12120	14735	0323	10433	5027	77.32	17739	6000	1111	60 4-1 0	er io		10	000
H	(A)	41691	(U)	2000	en Too	80 80 80 80 80 80 80 80 80 80 80 80 80 8	40000	th O	0) V) W)	10822	(C)	0.00 0.00 1	00 in 60 in	0000	O) O) O)	6002	-10000	400	22473	(A)	5020	-6870	ക സ സ	-0852	-5370	47.75	-8206	5609	00 00 00 00 00 00 00 00 00 00 00 00 00	-6839	0000	- 1000 T	42 90 42 90 42 90
A.	-9225	10 50 50 50 50	0489	0.42	0.00 400 400	1000 000 000 000	(a) (b) (c)	-0204	5879-	(a) (b) (c) (d)	77 60	9010	-1105	2,800	en Con	00000	50 00 00 00	0000	5007	5 5 5 7	2000	7730	2000	0) 0)	0 10 10 10	-10000	00 60 44 10	6.7 (1)	-2576	7007		00	-4187
L L	4	60	09000	(1) (2) (3) (3)	2000 2000 2000 2000	(I) (I) (I)	(O) (O) (O)	0 0 0 0 0	0000	-7505	2000	47		200	() ()	년 () () ()	0220	-5036	00 00 00 00 00 00 00 00 00 00 00 00 00	0000	7354	120	- 2007	(O) (O) (O)	62.00	2443	(A)	507			Ob .	(Q) (Q)	
S	\$											•											•				-88			44.			
1/2	34		හ	Cr3	(D)	(2,7) (3,9)	O T	200		(7) (7) (7)	4.1g		21 (1)	r.	χ) Ν	41. (13)		10	(O)	(၁)	\\$° (L) }	က်	co (\c. \c.	၁ (က (9 (ස් . ග	O (က (ယ (O O

B'muia - /- of the 1 --- meather

Q	•											· (1878)		8		-							M	C
O'	- C	-1.766	<u>~1</u>	1	1 874		258	4.0	7.3	883				o'	780	90 -	153	222			. 838 . 838		2 017	4.844
Ó							10	មា មា មា	-2 308 -1-	10 03 04	~ j		Section of the sectio	0	808	(C)	5	262	1 88 89		-2 515	© 000 © 000 000		154 000
7		12 00 0				200	22	(3) (3) (3)	369 434 434	* .	2 · 3		Compages on compages	7	00 50 51	130		S	42.2	-2 470	1 748	2000	134 052	
X		2 077			-2 220	275	2 2 2 2	181 880		\$. ·	ess og S		103	 K	867	03	E08	ଟ ଓ ଓ	- 479	03 03 03 13	- 750 00 150	184 010		
	01 01 01			22 23	2012	ୁଟ୍ଟ ପ୍ର	152 008				i G July		B .2.1	1-1	90s	277	902	1 5	(3) (4) (5)	-3 520	188 384 188 384			
00,	10 63 93 64	2 337	2.88.2	.: h	12 520	182 064							normales	00	(O)	() () ()	1005	(O) (O) (O)	(C)	255 955 354				
2N2	125		298	4220	132 722						V ^A		équations	2112	190 5-	00 01 01	0.30 €	100 FT	133 278					
in a	5 044	₹08 8	1 - 1	152 648					\$. Y			:	des	CV III	03 34 10 10	C-1	327	55 55 55 55 55 55 55 55 55 55 55 55 55						
, c	280	80 1	152 566						3				coefficients	A	734.31	-1	200 400 400 400 400 400 400 400 400 400							
رم در	10.95G	132 471				\$							Tableau V	L2	(일) (일)	(3) (6) (3)								
N N	34 000 E										<u>\$</u> 555		E E	 S S	S2 000									

200 E H H O H H B H W R

8	ON VA			e ia e	: :	() ()		4	 	ිද් _ව ගා	5 .		7				i .	<u>.</u>			 		
o .		94 약 덕 덕	<u>े</u> च		() () ()	씨 성		्त उठ स्त्र	일 	← ⊛)	100 位。 (計) (対) (対) ((1)		0	100 100 100 100						 	(O)	10 05	700 302
=	£	5 C13	1 612	1.897			- 8 548 - 8	्र ६८ ० १	747 569	21 469	712 27		Marie Control	710 ct-	13 408	-12 403	12 270	-12 361	970 T	03 24 03		့ တ	10 034
Y	500 G	573	7.63. 7	12 367	2 561	-14 782	575 3	747 864	120 0	-15 181	15 254		K	15 690	386.27-	72 862	-12 842	12 948	-38 210	S. S	758 811	12 782	12 755
 	-5 273	68 24 28 38	-8 145	2.479	12 STS	20,834	247 674	8 574	0740	12.926	-12 054		H	16 213	14 459	-18 402	15 290	43 420	10 147	758 891	-2 742	2 742	1.584
00	5 618	579 8-	\$30 8	Fgf (E) v-f	\$ 508	745 445	20 654 20 654	-14 732	12 529	-14 642	61 62 60 - 64 - 51		00	77 187	145 412	(1) (1) (1)	-14 000	14 874	755 505	10 147	400	640 =	470
2M2	22 25	300 8	-4.562	24 870 273	1751 144	ිට 10 න	27.6	18 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 26.	1 736	10		2N ₂	21 000	(3) (3) (4) (2)	23 23 23 24 25 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	577	755 240	F42 51	126 62	24 09 -34 -09	-42 56	
2	-54-192	890 41	4 242	751 888	4 878	707 100	2 473	-2 187	897	7, 307	1 202		S.	-30 221	60 70 80 80 80 80 80		758, 204	417	-14 088	13 20	-12 642	CV2	-11 064
A	43 947	-482	752 514	42 24 24 24	<u>श्</u> र	2 664	-2 145	1 377	10	ි ලා ත්	100 p		See .	40 003	(0)			୍ଦ ଜ ତ	77	άĐ	CV.	C/S	11 154
L_2	-112 251	765 274	468	000		389 R-	250	1 672		4- 24- 34-			[ma]	1410 982	0					Q.	ρĎ	. O	0.71
, va C	779 603	-412 851	(C)	(0) (대	. c/ 10	64			<u>C</u> -		(3)		S	788 102		0 0							

8 04 Q^{d} 4 R₁ 8 90 Q, H₂ L II. K1 04 Q₁ 50 E. 0 1 16 77 77 77 -15 -13 1 君皇 ** -21 -2A 20 20 山蓝 ,a. 2 10 -143 -137 12 10. -10 -13 1 基键 -0 -12 -1 -1 -14Q -25 10 -10 -13 74 12 2 -134 S ä, 3 w W P 47 質問 -58 Ē ~J \$002 86 440 5 3 636 -11 11 -1 -6 19 A 6 -45 rý ~;ૈ 1003 84 -5673 15 \$04 m.1 1 4 6.3 110 12 Û · -- 6. 1003.6 82.4 -53 5.9 5.0 -5. U 70. 1 B83. -41. U 9 3 1012 43 -28 3 46 -2 COOR -23 3 8 27 G ŏ 0 Ø Ò Ò () Ü 0 Ó 0 Sa 0 õ 0 1000.0 O 2000.0 · 0 1 ~J -1 0 8 968 -48 29 -3 -- & -φik',θ -2 23 -2 976 32-8 -6 1 -1 -1 1 -1 -19 10 41 41 24 9 26 -18 S Ó 0 1 - d -1 0 -1 -4 19 Ü 為 0 -16 0 10 -15 Ù 21 -1 0 O COC 0 Ô 10 -8 0 10 ۵7 S 0 0 0 Q . -2 0 O Ò Ü 0 0 13 La 0.0 0 Õ 0 0 - 3 \$ B 10 -Ý පි 43 145 ij -1292 13 -1.13 130 -59 Э -2 -9 2 990 -70 2 3 -45 -05 -1 14 985 10 ÷53 0 6 O Ü 0 0 0 0 0 1000.0 0 0 Ö 0 0 100000 1.3 S O 0 0 0 2 1000 4 Ö 0 0 -1 0 À 0 0 16 3 1000 -2 82 €. -2 991 **4**3 - 3 ₿ -6 -(4 42 17 50 997 7,6 -1 -1 0 45 152 974 -10 -1 إياضم -13 -B -5 ij 11 72 971 961 141 -1 -1 11 65 18 -5 - (j 11 -5 **5** -13 -11 0 55 146 963 0 0 159 20 68 00 O 0 0 0 Ô 1000 0 0 O Ó Q 0 0 0 0 0 1000.0 N Ō 0 0 Q 0 0 1000 -2 -4 1000 21 22 $-\tilde{z}$ -4 0 0 õ 0 O Ó 0 1 1000 Ò 0 wit. -8 -9 -4 17 -77 12 5 13 -11-66 145 23 17, 25 26 43 156 -2 -2 8 -56 -711 Ü 0 8-Ö 0 Q 0 0 O 0 0 0 0 Ø 0 0 0 0 0 0 -**2**2 Ö $-\frac{1}{17}$ 17 Ö -1 0 0 17 8 4 67 -9 0 Q 4 13 13 10 -19 ÷3 -11 56 85 -58 -2 **475** 30 -10 33 -14 3 - 3 -1 6 8 15 -15 22 · (3 21 1 17 27 Q 28 -14 15 -48 -18 18 -16 -10 15 -14 ...U 4 24 8 20 -20 -4 -4 3 15 -17 -18 17 -10 -1015 -15-15 -5 a? -3 2 8 A -20 29 24000 20 10 0 0 0 0 4 8 -1 0 80 31 62 00, Ø 4 2 -2 0 0 0 Ö Q 2 1 ..4 O 0 Ö 0 -1 0 0 Ò 2 O Ō Q Ò 0 0 O 0 Ó Ö O σ Q Ø 0 Ô 0 3 Ò Q U 1 1 ·Ú ŏ -8 **-∕**₹ _g 8 0 0 -4 0 33 -73 ...4 O 8 - J -01 24 3 -79 -36 29 -2 2 -2 1 -3 24 80 d () 3 0 0 0 -0 ~3 0 0 0 Ö O _0 -3 99 Ó Q 0 Ü 1 Ò 41 ŏ -1 \$ 0 -4 0 30 n 0 0 0 () Ő 0 Ó 0 0 0 Ò 0 UU 27 3, 0 0 -8 -0 3 143 40 -30 2021 -32 1 -2 440 43 80 -4 -4 4 -61 -44 146 -13 -3 3 41 5 49 41 42 -33 --2 3 151 11 -4 -4 4 6 -0 -8 3 -43 O 42 961 63 063 ~ G 0 -23 -23 1 3 -2 -3 990 84 83 35 -24 0 -1 -0 -3 Э 991 ō O D U -3 0 0 Ü 1000 4 0 Õ -3 0 0 1000 4 0 0 Ö 0 999.9 0 0.0 0.0 Q 840 0 43 2.1 40 0, 2 1000.1 -1 Ö 0 0 0 0 0 0 Ó 0 Ó 1000.0 0 0 1000:0 0 0 K, -3 -8 -7 Q O 0 Ó -2 -87 Ö 1000 1 13 0 Ó 45 -2 1 0 Ö Q 1000 1 4 Q 23 1 992 -4 Ó a-1 **~3**8 -3 890 1 21 0 1 -Ĭ 80% -87 25 2 Ó £ 25 Ą **-3** 990 -38 200 ~7 48 8 -2.9 964.0 -73.2 49,3 4 50.B 0.1 7. 0.8 -6.7 563. -76.0 3 Q 0 Ö 963 -77 47 _7 3 -3 51 Ż 7 -7 961 ≈78 51 -1 920 150 -112 -115 -112 73 -11 -10 的 74 Ö. -4 -10 -7 -114 50 918 11 10 -4 Q Q - 8 è -3 02 Ø 156 -115 600 7 61 a -8 9 () 1000 3 151 -3 -7 60 151 -113 52 Ò 0 0 0 0 8 Ó 0 4 -4 43 -4 53 0 Õ 0 0 Ø 0 0 8 _9 _9 0 0 54 M. 0 0 0 0 ŏ 0000 011 0 0 O -8 -1 1 8 -4 -1 0 0 \$55 O 0 17 -9 -1 -17 1 <u>-6</u> 0 -17 -21 56 1 17 0 d -1 -11 -79 Ŏ 0 -21 -11 4 0 -1 -9 431 37 1 -1 -5 -79 -133 8 679 168 167 -1 3 128 ...3 58 59 -9 8 -128 160 100 CO _17 2 -0 10 -3 3 -79 -130 -1 -81 -79 904 -11 -10 10 8 -27 3 -77 966 -130 10 -1 ن ان س -11 -6 906 **⊸128** δð 10 -10 0 -1 -71 -17 4 -1 1 10 **98** 993 5 -70 -1 -1 61 -5 5 955 993 ō 0 63 64 1000 3 1 --- 1 0 0 -8 -17 1 -8 1000 -2 -1 2 0 0 0 0 Ò 1000 -0 1 100 0 0 0 -4 1000 (C) -1 -1 Q ÒÚ Ó 0 0 0 1000.0 0 0 1000.0 0 0 0 Q 0 0, 0 00134 Q 2. () Q 909.9 4 . 0 0 Ď.O 0.1 4 65 0.4 0 8 0 999.0 0. õ 1019 -1 -0 40 Ó Ö 1000 8 おおびマヤ 0 60 67 -1 1000 8 0 1 1 3335000 808 800 (53 1,53 0 35 81 0 6 5 -3 889 1 13 -2 38 -B 10 12 12 1 68 50 969 151 975 977 -10 -10 0 <u>...3</u> 145 2 2 <u>-3</u> 41 69 70 -10 149 971 44 11 10 -4 0 20 89 140 ⊢8 ي پ -3 43 272 -10 144 o ō 1000.0 O 0 0 71 Ü O 1000.0 Ó 0 0 0 1000 0 0 Q⁴ 0 -1 m 4.4 Ô 1000 () Q -1 -4 73 0 1000 19 1 ..2 · **** 8 22 1 -1 0 -3 **-9** -0 0 1000 73 1 -1 -1 21 21 18 -20 -13 -53 -20 20 -29 -29 -24 ~? -3 4 74 24 -32 -73 154 22 -20 120 -20 19 20 -12 -51 -71 140 -3 Ą 24 -31 -24 15 15 -12 -10 15 62 -12 Õ 40 -5 -1 Ī 78 47 -16 -13 13 13 -13 19 10 -1() -1 3 13 .-.10 14 -2 2 -17 -14 14 -10 -10 1.0 -55 12 0 21 49 26 -74 22 -23 27 78 18.-10 -16 9 -1 -16 -11 ---4 A LAR

-684 Tableau XI - 3.669

ol	s_2	I 2	m ²	$_{ m N}^{ m S}$	$2N_2$	009	I	K ₁	M ₁	01	Q1
3.66 Q	3.66	3.66	3.64	3.61	3.57	3.56	3.63	3.66	3.64	3.63	3.46

Tableau XII	*1009	erreurs	affectant	les	résultata	d	une	analyse	rensulle
-------------	-------	---------	-----------	-----	-----------	---	-----	---------	----------

Méthode		ison R sin r	Doodson R cos r	n-Lennon R sin r		tzev R sin (Leco:	lazet []	ici pri	esentés Y
K	0.070	0.090	0.095	0.123	0.059	0.059	0.085	0.074	0.064	0.064
O,	0.076	0.075	0.112	0.110			0.083	0.080	0.065	0.065
Qj	0.072	0.074	0.110	0.112			0.083	0.081	0.066	0.066
s ₂	0.076	0.076	0.076	0.076	0.059	0.059	0.077	0.073	0.065	0.065
M ₂	0.076.	0.076	0.078	0.078	0.087	0.082	0.078	0.076	0.064	0.065
N_2	0.076	0.076	0.079	0.079	0.087	0.080	0.080	0,078	0.065	0.065

Tableau XIII - relation entre le poids des résultats obtenus par la méthode des moindres carrées ici présentée et par d'autres méthodes mensuelles

Méthod		dson		n-Lennon		tzev		lazet	ici pré	sentée
onde	R cos r	R sin 1	R cos r	R sin r	R cos	R sin (rC J	C 3'	X	Y
K ₁	1.19	1.98	2.19	2.84	0.85	0.285	1.74	1.72	1.00	1.00
0,	1.28	1.33	2.96	2.86			1.61	1.51	1.00	1.00
Q ₁	1.19	1.26	2.76	2.86			1.59	1.51	1.00	1.00
s ₂	1.28	1.37	1.37	1.37	0.83	0.83	1.39	1.25	1.00	1.00
M ²	1.41	1.37	1.49	1.44	1.85	1.59	1.49	1.37	1000	1.00
N_2	1.37	1.37	1.49	1.49	1.80	1.51	1.51	1.44	1.00	1.00

Tableau XIV - influence de différentes combinaisons éliminent la dérive sur dérive périodique

Vitesse angulaire Fériode de la dérive	10 15 ^d	2° 7.5 ^d	4°	6° 1 2.5 ^d	8°	10°	12 ⁰
Combinaison de Pertzev	.0141	0553	.2071	.4182	.6398	.8259	.9473
Combinaisons diurnes	facto	ours rel	atifs à S	3.			
Doodson	.0184	.0724	.2702	.5404	.8119	1.0162	1.1055
Doodson-Lennon	.0012	.0098	.0728	.2183	8365	.6820	.8880
Lecolazet	.0015	.0115	.0852	.2520	.4944	.7524	。9483
1/16 Z ₆ ⁴	.0001	.0019	.0272	.1194	.3049	.5625	.8183
Combinaisons semidiurnes	facto	eurs rel	atifs à S	22 _			
Doodson	.0036	.0142	.0524	.1019	.1447	.1616	.1362
Doodson-Lennon	.0001	.0010	.0073	.0,213	.0403	.0561	.0566
$1/16 z_3^4$.000007	.0001	.0019	.0091	.0272	.0625	.1194

BIBLIOGRAPHIE.

- 18m.K. XPHOTOB, OCHOBE HA TEOPESTA HA BEPOSTHOCTETE, PPERKETE, HESPABHEHEETO, COQUE, 1957.
- 2. B. IMBERT. L'analyse des marées par la méthode des moindres carrées.

 Bull. Com. Cen. d'Océanographie et d'Etude des Côtes, VI^e année,
 N° 9, nov. 1954.
- 3. W. HORN, Some Recent Approaches to Tidal Problems. Centre Belge d'Océanographie et de Recherches Sous-Marines, Journées des 24 et 25 février 1958.
- 4. W. HORN, The Harmonic Analysis of Tidal Phenomena: Theory and Practice. Comm. Obs. Roy. Belg. 142, S. Géoph. 47, 1958.
- 5. W. HORN, The Harmonic Analysis, According to the Least Square Rule, of Tide Observations upon which an Unknown Drift is Superposed.

 Third Int. Symp. Earth Tides, Trieste, 1959.
- 6.П.С. Матвеев, Гармонический анадыз месячной серые прилевных наблюдение. Тр. Подтавской Гравии. Обс.т. IX, 1961.
- 7. C.T. SUTHONS, The semi-graphic Method of Harmonic Analysis of Tidal Observations Extending over about one Month.

 Comm. Obs. Roy. Belg. 142 S. Géoph. 47, 1958.
- 8. A.T. DOODSON, L'analyse des observations des marées d'une durée de 29 jours. Rev. Hydr. Int. XXXI, N° 1, mai 1954.
- 9. A.T. DOODSON The elimination of drift effects from tidal analyses.
 Comm. Obs. Roy. Belg. 142 S. Géoph. 47, 1958.
 G.W. LENNON
- 10. R.LECOLAZET, Application à l'analyse des observations de la marée gravimétrique, de la méthode de H. et Y. Labrouste,
 Ann. Géoph. t. 12, fasc. I J.-M. 1956.
- 11. R.LECOLAZET, La méthode utilisée à Strasbourg pour l'analyse harmonique de la marée gravimétrique. B.I.M. N° 10, 1958.
- 12. В.П. Перцев, Гармонический анадиа приднвов.
 Изв. АН СССР, сер. геоф. № 8, 1958.
- 13.В.П. Перцев, Гармоническей аналез 50-деевных редов наблодение приливных изменение силы тяхести. Изучение земных приливов № 2. 1961.

14. H. et Y. LABROUSTE,

Analyse des graphiques résultant de la superposition de sinusoïdes. Paris, 1943.

15. A.T. DOODSON,

Methods of analysis of Tides. Comm. Obs. Roy. Belg. 114 S. Géoph. 39, 1957

16. R. LECOLAZET,

Sur la reconstitution des observations par Interpolation. Comm. Obs. Roy. Belg. 188 S. Géoph. 58, 1961.

17. R. LECOLAZET,

Sur l'estimation des erreurs internes... B.I.M. 17, 1959.

18. G.W. LENNON,

Some further comments upon the treatment of drift and other non-tidal effects in the analysis of earth-tide observations. Comm. Obs. Roy. Belg. 188 S. Géoph. 58, 1961.

19. P. MELCHIOR,

Validité de la méthode de Lecolazet pour les stations clinométriques soumises à d'importants effects indirects. Comm. Obs. Roy. Belg. 188 S. Géoph. 58, 1961.

20. I.M. LONGMAN,

Use of digital computers for the reduction and interpretation of Earth Tide Data. B.I.M. No 22, 1960.

21. P. MELCHIOR,

Nouveaux développements apportés à l'étude des Marées Terrestres par les procédés de calcul électronique au Centre International. Comm. Obs. Roy. Belg. 188 S. Géoph. 58, 1961.

SUR LA DETERMINATION DE L'ONDE O1 ET LE CALCUL DE QUELQUES PETITES ONDES PAR L'ANALYSE HARMONIQUE D'UNE SERIE D'UN MOIS D'OBSERVATIONS DE MAREES

P.S. Matveev

(Troudi Poltavskoi Gravimetritcheskoi Observatorii X, pp. 57-66, Kiev 1961)

La méthode que nous avons proposée [1] pour l'analyse harmonique d'une série d'un mois d'observations de marées donne la possibilité de déterminer les six ondes importantes de la marée terrestre : Q_1 , Q_1 , Q_2 , Q_3 , Q_4 , Q_5 , Q_4 , Q_5 , Q_6 , Q_8 ,

Nous avons fait la première vérification de la méthode dès la fin du travail par une analyse de contrôle sur trois séries mensuelles des corrections Δg de variation lunisolaire de la force de pesanteur, corrections calculées par J. Goguel [2]. La précision de ces corrections selon le contrôle de la méthode d'analyse harmonique est relativement faible ($\mu_{\Lambda}=\pm~0,0022$ mgal). C'est pourquoi le résultat satisfaisant obtenu par cette vérification [1] n'a pas permis de juger de la capacité de résolution de la méthode bien que la sécurité de celle-ci n'ait pas éveillé de doutes.

Notre méthode a été soumise à une vérification soigneuse et assez complète dans le travail de V.G. Balenko et S.N. Zachartchenko [3], consacré à la comparaison des différentes méthodes d'analyse harmonique.

A titre de modèle d'essai V.G. Balenko et S.N. Zachartchenko se sont servis dans leur travail d'une série de six mois d'ordonnées horaires représentant la variation de composante verticale de la force génératrice de marées. Le calcul des ordonnées a été effectué sur une calculatrice électronique «Kiev» au moyen d'une sommation de 86 ondes de marées (7 à longue période, 52 diurnes et 27 semi-diurnes) avec une précision assurant une unité de la cinquième décimale du milligal. Chaque série d'un mois d'ordonnées a été analysée par quatre méthodes différentes. Les valeurs obtenues pour les constantes harmoniques des ondes déterminées ont été comparées avec les valeurs correspondantes de ces constantes utilisées pour le calcul des ordonnées. Les résultats de cette comparaison ont permis de juger de la capacité de résolution des méthodes en ce qui concerne la partie périodique de l'oscillation de marée.

A partir des critiques faites par les auteurs de ce travail à l'égard de notre méthode, il est très important de noter premièrement, la sécurité insuffisante de la détermination de l'onde O_1 et deuxièmement, la suggestion de tenir compte pour la détermination de l'onde N_2 , de l'influence assez considérable de l'onde perturbatrice 245,555}*, provenant de la partie du potentiel de la force génératrice de marée, s'exprimant par une fonction sphérique du troisième ordre. En vérité, cette dernière remarque s'applique non seulement à notre méthode mais aussi à beaucoup d'autres méthodes (Doodson, Pertsev et autres) largement appliquées à présent. Mais il est évident que le fait que cette critique s'applique communément à ces méthodes n'en diminue en rien la portée. Le calcul

de l'influence de l'onde $\{245,555\}$ * sur l'onde déterminée N_2 est sans aucun doute nécessaire puisque dans le cas inverse les valeurs γ et β , obtenues pour cette onde, renfermeront une erreur systématique de l'ordre de 5 ou 10 % respectivement.

L'importance de ces deux critiques nous a incités à revenir au schéma d'analyse adopté dans notre méthode dans le but de la reviser partiellement et de l'améliorer. Le présent travail expose ce qui a été obtenu dans cette révision du schéma initialement proposé qui, selon nous, permet d'augmenter la précision de la méthode.

Détermination de l'onde 0,

Nous rappelons que pour la détermination de l'onde O_1 par notre méthode [1] (désignée ultérieurement comme l'onde $R_{\rm x}$) il est indispensable de disposer d'une série d'observations englobant 650 ordonnées horaires ce qui constitue 27.08 jours. Toutes les ordonnées horaires sont disposées d'après le temps spécial d'une certaine onde fictive $O_1^{\rm c}$ dont la période est égale à 26 heures solaires moyennes, les sommes $\Sigma\eta_{\rm c}$ des ordonnées se trouvent à chaque heure spéciale de cette onde. Chaque somme se représente par l'équation suivante :

$$\sum \eta_{t} = [\eta_{0}] + yt + A_{x}^{t} \cos q_{x}^{t}t + B_{x}^{t} \sin q_{x}^{t}t + A_{2x}^{t} \cos q_{2x}^{t}t + B_{2x}^{t} \sin q_{2x}^{t}t$$
 (1)

où les deux premiers termes de la partie droite expriment les parties constante et linéaire du mouvement du zéro tandis que les troisième et quatrième termes représentent la contribution de l'onde diurne O'₁ et de l'influence des ondes diurnes perturbatrices; les cinquième et sixième termes représentent les contributions de toutes les ondes semi-diurnes

Du fait que les vitesses angulaires des ondes O_1 réelle et O_1' fictive diffèrent relativement d'une petite grandeur $(q_x - q_x' = 0,0968818)$, dans les valeurs obtenues à l'instant de l'onde O_1 pour les sommations $\Sigma \eta_t$, la contribution de l'onde réelle O_1 sera quelque peu diminuée en amplitude et déphasée par rapport à sa contribution dans le cas de la sommation des ordonnées selon le temps de l'onde O_1 Cependant la perte dans le facteur d'amplitude par suite de la sommation des ordonnées d'après le temps de l'onde fictive ne constitue que 4,96 $^{\circ}$ / $_{\circ}$, de sorte que la contribution de l'onde réelle O_1 reste tout à fait suffisante pour une détermination sûre

Après l'obtention des sommations $\Sigma \eta_t$ la suite de l'exécution des opérations fondamentales de calcul consiste en ce qui suit

 1° . Le système de 26 équations du type (1) fournit une solution qui par le procédé des moindres carrés donne les valeurs les plus probables des coefficients intégraux A'_{x} et B'_{x} , représentés sous forme linéaire par les expressions suivantes

$$A_{x}^{t} = +(F_{c})_{x} u_{x} + (F_{s})_{x} v_{x} + (F_{c})_{y} u_{y} + (F_{s})_{y} v_{y} + ...$$

$$B_{x}^{t} = -(F_{s})_{x} u_{x} + (F_{c})_{x} v_{x} - (F_{s})_{y} u_{y} + (F_{c})_{y} v_{y} - ...$$
(2)

 $(F_c)_1$ et $(F_a)_1$ sont ici les grandeurs fondamentales pour la méthode proposée (elles restent constantes pour la durée standard de la série traitée); les inconnues u et v contiennent l'onde déterminée (R_x) et les ondes perturbatrices (R_y, R_z) indiquées par l'équation du cosinus :

$$\eta_i = R_i \cos(q_i t - \zeta_i) = u_i \cos q_i t + v_i \sin q_i t , \qquad (3)$$

οù

$$u_{i} = R_{i} \cos \zeta_{i} ,$$

$$v_{i} = R_{i} \sin \zeta_{i} ,$$
(4)

- 2°.- Les valeurs des coefficients intégraux A'_x et B'_x sont affranchies des influences de toutes les valeurs calculées dans la méthode des ondes perturbatrices. Les quantités u_v, v_y, u_y..., contenues dans le second membre des égalités (2) se reportent dans le premier membre et s'introduisent comme corrections dans les valeurs A'_x et B'_x.
- 3° .- D'après les valeurs corrigées des coefficients intégraux A_x et B_x par la solution des deux équations à deux inconnues :

$$A_{x} = (F_{c})_{x} u_{x} + (F_{s})_{x} v_{x},$$

$$B_{x} = -(F_{s})_{x} u_{x} + (F_{c})_{x} v_{x}$$
(5)

on calcule les inconnues cherchées u_x et v_x , et d'après elles on trouve l'amplitude R_x et la phase initiale ζ_x de l'onde déterminée.

Le processus d'«épuration» des coefficients intégraux A_x et B_x et de la détermination ultérieure des inconnues u_x et v_x à partir de la solution du système (5) peut être exécuté par quelques approximations. Dans la première approximation de la correction dans A_x et B_x pour les ondes perturbatrices on introduit comme valeurs fondamentales, des grandeurs u_o et v_o calculées d'après les données de la décomposition du potentiel de la force génératrice de marées en série pour la Terre absolument rigide avec les valeurs les plus probables γ_o et β_o . Pour effectuer la seconde approximation on utilise les valeurs u' et v' des ondes perturbatrices, calculées avec v', β' et des retards de

phase κ' correspondants, obtenus à partir de la première approximation etc. Chaque approximation successive améliorera dans une certaine mesure le résultat c'est-à-dire augmentera la précision de la détermination de l'onde R_x . Cependant on arrive à une augmentation peu importante de la sûreté du résultat obtenu ce qui ne justifie pas un développement considérable de la méthode, lequel exige beaucoup de travail puisque celui-ci s'accroît proportionnellement au nombre d'approximations. Le contrôle de la méthode sur le matériel théorique et réel a montré que pour obtenir des valeurs sûres des inconnues u_x et v_x de l'onde déterminée il suffit de se borner à l'application de deux approximations. A la lumière de la remarque critique mentionnée plus haut concernant la précision particulièrement faible de la détermination de l'onde O_1 nous avons examiné à nouveau succinctement le schéma de calcul décrit. Il est apparu que plusieurs des résultats les meilleurs en précision donnent une variante, dans laquelle la sommation des ordonnées $\Sigma \eta_t$ est représentée par l'équation (1) mais avec le maintien dans la partie de droite des quatre premiers termes seulement c'est-à-dire :

$$\Sigma \eta_t = [\eta_0] + yt + A_x^t \cos q_x^t t + B_x^t \sin q_x^t t$$
 (6)

Les valeurs des inconnues y, A_x' et B_x' , obtenues à partir de la solution du système de 26 équations (6) ont un poids p_w plus grand que dans le cas de la solution du système des équations (1), ce que montrent concrètement les données de la table 1. Comme en [1], chacune des inconnues calculées se présente comme une fonction linéaire des termes $\Sigma \eta_t$ sous la forme :

$$W_{i} = (a_{i})_{0}(\Sigma \eta)_{0} + (a_{i})_{1}(\Sigma \eta)_{1} + \ldots + (a_{i})_{25}(\Sigma \eta)_{25}$$
 (7)

où l'est l'index généralisé de l'inconnue. Les valeurs des coefficients $(a_i)_t$ entrant dans (7) sont données dans la table 2, qui doit dans la suite se substituer aux trois dernières colonnes de la table VI de la publication [1].

Inconnue	Variante avec	Variante avec
calculée w	l'équation (1)	l'équation (6)
A _R , B _z	2,181 12,522 3,624	3,634 12,709 5,092

Dans la variante initiale de la détermination de l'onde O par application du procédé des moindres carrés pour le calcul des valeurs des coefficients intégraux A de tent de la assuré automatiquement l'élimination des influences des ondes semi-diurnes (dans la solution du système des équations [1]). Dans la nouvelle variante cette élimination est malheureusement impossible. C'est pourquoi dans les valeurs obtenues en fonction des

coefficients $(a_i)_t$ de la table 2, les valeurs A_x^t et B_x^t doivent être introduites comme ondes diurnes et en outre des corrections complémentaires tenant compte de l'influence des ondes semi-diurnes.

La contribution des ondes semi-diurnes individuelles est généralement parlant petite. La plus grande d'entre elles (l'onde $\rm M_2$) peut amener une erreur dans l'amplitude de l'onde $\rm O_1$ ne dépassant pas 0,5 %. Cependant l'influence commune de toutes les ondes semi-diurnes peut conduire à une erreur systématique, atteignant 1,0 - 1,5 %, ce qui nécessite dès lors le calcul des influences de ces ondes.

Table 2. Coefficients $(a_i)_t$ pour le calcul des inconnues y, A_x^i et B_x^i de l'onde O_x

t	$(a_y)_{\mathfrak{t}}$	$(a_{\text{A}})_{\mathfrak{t}}$	$(a_{\mathbf{B}})_{t}$		(a_y) t	$(a_{\mathbf{A}})_{i}$	(aB)t
0	-0,25320	+0,05667	-0,16682	13	-0,01101	-0,07780	-0,00725
1	-,18842	+ ,05961	-,10574	14	-,03175	-,07723	-,03933
2	-,12742	+ ,05792	-,04820	15	-,04872	-,07201	-,06785
3	-,07244	+ ,05178	+,00328	16	-,05966	-,06235	-,09032
4	-,02541	+ ,04166	+,04656	17	-,06266	-,04871	-,10459
5	+,01222	+ ,02825	+,07998	18	-,05626	-,03178	-,10899
6	+,03955	+ ,01244	+,10242	19	-,03955	-,01244	-,10242
7	+,05626	- ,00477	+,11343	20	-,01222	+,00829	-,08442
8	+,06266	- ,02226	+,11321	21	+,02541	+,02931	-,05518
9	+,05966	- ,03892	+,10261	22	+,07244	+,04949	-,01558
10	+,04872	- ,05368	+,08311	23	+,12742	+,06777	+,03294
11	+,03175	- ,06557	+,05666	24	+,18842	+,08319	+,08840
12	+,01101	- ,07381	+,02566	25	+,25320	+,09494	+,14841

Les ondes semi-diurnes suivantes N_1 , M_2 , S_3 , K_4 , $2N_2$, μ_4 , μ_5 , et L_4 exercent une influence plus ou moins sensible sur l'onde O_4 . Les coefficients (F_4) et (F_4) , nécessaires pour le calcul et l'introduction ultérieure (d'après les formules (30) de la publication [1]) des corrections pour l'influence de ces ondes, sont données dans la table 3, qui par l'application ultérieure de notre méthode doit compléter la table X du travail [1] par deux nouvelles colonnes.

र तरह व तरह करहा, हो है है कि पूर्व कर हो है । सहस्र के कि तरह कर है कि प्रति कर है है है कि स्वरूप कर र है है

in referential organization is executed

Table 3

Coefficients $(F_c)_i$ et $(F_s)_i$ pour le calcul des influences des ondes semi-diurnes sur l'onde O_i

Onde perturb	a trains	O ₁ (II)		
Onde berrain	auroc	A	В	
N ₂	μ	- 0,15	+ 0,22	
	μ	- ,22 - ,16	- ,15 + ,20	
M ₂	ν μ	- ,20 - ,13	- ,16 + ,05	
S_2	ν	- ,05 15	- ,13 + ,17	
K 2	μ	- ,17	- ,15 + ,25	
2N ₂	μ $ u$	- ,15 - ,25	- ,15	
μ_{2}	μ	- ,04 - ,31	+ ,31 - ,04	
$ u_{_{2}}$	μ	- ,06 - ,30	+ ,30 - ,06	
¥42	μ	- ,16 - ,18	+ ,18 - ,16	
Lucy displacement of the second of the secon	ν	5 Th CP	, 20	

De cette façon, la nouvelle variante de la détermination de l'onde O₁ ne diffère de la variante initiale que par le remplacement des coefficients proposés primitivement par d'autres et par le calcul complémentaire des huit ondes semi-diurnes.

Calcul de quelques petites ondes perturbatrices.

Pour l'élaboration du procédé de détermination des six ondes importantes de marées nous avons pris en considération dans le travail [1] 27 ondes perturbatrices : 15 diumes et 12 semi-diumes. A titre de critère pour limiter la liste des ondes prises en considération nous nous sommes laissés guider alors par l'exigence que soient calculées toutes les ondes perturbatrices apportant des contributions qui atteignent au moins un pour cent. Pour cela on n'a pris en considération que les ondes issues du potentiel de la force génératrice de marées, exprimée par une fonction sphérique du second degré et on a ignoré complètement les ondes issues du potentiel exprimé par une fonction sphérique du troisième degré.

Cette méconnaissance des ondes prenant leur origine à partir d'une fonction sphérique du troisième degré s'est fait sentir très défavorablement sur la précision de la détermination de l'onde N_2 ce qui a trouvé une répercussion dans la remarque critique qui a déjà été mentionnée [3] relative à la nécessité de calculer l'onde {245,555}*. Une étude plus attentive du problème de l'influence perturbatrice de cette onde nous a amené à la conclusion qu'il convient de tenir compte de son influence dans notre méthode non seulement pour déterminer l'onde N_2 mais aussi pour déterminer l'onde M_2 . En outre, il est apparu que pour assurer l'élimination des influences des ondes perturbatrices sur l'onde N_2 avec une précision atteignant 1 - 2 °/o, il est nécessaire de tenir encore compte d'une onde assez proche d'elle {245,545}*.

Pour ne pas surcharger dans le schéma du calcul la table des termes corrigés par deux lignes superflues, nous avons décidé de tenir compte indirectement de l'onde {245,545}* au moyen de la réduction correspondante de l'amplitude et de la phase de l'onde {245,555}*.

Dans la décomposition en série du potentiel de la force génératrice de marée selon A. Doodson [4] ces deux ondes se représentent par les expressions suivantes :

$${245,545}^* = -0,00097 G_2^* \sin (2r - s + N),$$

$${245,555}^* = -0,00569 G_2^* \sin (2r - s),$$
(8)

où r et s sont respectivement l'angle horaire moyen et la longitude moyenne de la Lune, N est la longitude moyenne du noeud ascendant de l'orbite lunaire et le facteur G_2^* (fonction géodésique) a la forme suivante :

$$G_2^* = 2,59808 G \sin \phi \cos^2 \phi.$$
 (9)

lci G est une fonction du rayon de la Terre prise habituellement comme grandeur constante (= $26206 \text{ cm}^2/\text{sec}^2$) pour toute la surface de la Terre et ϕ est la latitude du point d'observation (géocentrique).

La somme des deux ondes (8) peut être représentée par l'onde {245,555}* réduite de la façon suivante 1:

$${245}^* = -0,0057 \text{ fG}_2^* \sin(2r - s + \bar{u}). \tag{10}$$

Les formules pour le calcul des grandeurs réduites entrant ici f et u ont la forme :

$$f = 1,0073 + 0,1698 \cos N - 0,0073 \cos 2N + 0,0006 \cos 3N$$

 $\ddot{u} = +9.77 \sin N - 0.83 \sin 2N + 0.09 \sin 3N$ (11)

1 Dans la suite toutes les petites ondes perturbatrices calculées complémentairement ne seront désignées que par les trois premiers chiffres de l'index caractéristique de Doodson. Avant de donner ici la table des valeurs des coefficients (F_c) et (F_s), nécessaires pour le calcul des influences de l'onde (10) sur les ondes N₂et M₂, notons que, pour la détermination des ondes Q₁ et O₁, il est souhaitable de tenir compte aussi de deux petites ondes perturbatrices ({135,555}* et {145,755}) qui dans la décomposition en série du potentiel de la force génératrice de marées d'après Doodson [4] se représentent par les expressions :

$$\{135\}^* = -0,0021 \text{ G}_1^*\cos(r - 2s),$$

$$\{145\} = -0,0024 \text{ G} \sin 2\phi \sin(r - 2s + 2p).$$
(12)

lci p est la longitude moyenne du périgée lunaire, et le facteur G₁* (fonction géodésique) a la forme

$$G_i^* = 0,72618 \text{ G cos } \phi(1-5\sin^2\phi).$$
 (13)

Les contributions des ondes (12) sont petites. Leur méconnaissance peut amener des erreurs dans les constantes harmoniques allant jusqu'à 3 °/o pour la détermination de l'onde Q₁ et seulement 0,7 °/o pour la détermination de l'onde O₂. Toutefois le calcul de ces influences systématiques relativement petites est indispensable puisque l'augmentation de la précision de la détermination des ondes diurnes a à la lumière de quelques travaux théoriques actuels [5] une valeur très importante pour l'étude des caractéristiques élastiques et de la structure interne de la Terre.

Les expressions des ondes (12) et (10) peuvent être mises sous la forme habituelle des ondes de marée en passant au signe positif et en substituant au temps lunaire (r), le temps solaire (t)

$$W = C G \phi (\phi) \cos (qt + V_0), \qquad (14)$$

où C et $G\phi(\phi)$ sont le coefficient numérique et la fonction géodésique de l'amplitude de l'onde correspondante et V_0 est la phase initiale pour l'époque t_0 . Les résultats de cette réduction sont représentés par les colonnes 2 - 5 de la table 4 qui, dans la suite, doit servir de complément à la table 1 de la publication [1].

Les valeurs des coefficients (F_c), et (F_s), sont nécessaires pour le calcul des influences des petites ondes perturbatrices envisagées, données dans les tables 5 et 6 qui doivent dans la suite servir respectivement de compléments aux tables IX et X du travail [1].

Pour tenir compte, sur la base des données des tables 5 et 6, de l'influence de chacune de ces trois ondes perturbatrices, il est nécessaire de connaître, même approximativement, les valeurs observées de ces ondes, données en (3). Puisque les vraies valeurs observées des petites ondes perturbatrices ne peuvent être obtenues la "rectification " des coefficients intégraux A_x ' et B_x ' des ondes déterminées sera faite [1] sur la base des valeurs des grandeurs u et ν , représentant les valeurs théoriques des ondes perturbatrices c'est-à-dire sur la base des valeurs u et ν calculées dans l'hypothèse de la Terre absolument rigide, avec le calcul des valeurs les plus probables des facteurs γ_0 et β_0 .

Les valeurs théoriques de l'onde $\{145\}$ dans l'oscillation de marée de la verticale (η) et dans les variations de la force de pesanteur $(-\delta g)$ se calculent d'après les formules :

$$\eta_{\alpha} = 0,01732 \text{ Ckf cos } [qt + (V_0)_0 + \overline{u} + d(\lambda - \lambda_0) \times A], \quad (15)$$

$$(-\delta g) = 0.08226 \ C\phi(\phi)f\cos[qt + (V_0)_0 + \overline{u} + d(\lambda - \lambda_0)]mgl,$$
 (16)

où $\phi(\phi)$, k et A se déterminent par les expressions (44) - (45) du travail [1], λ_0 est le méridien d'après l'heure t duquel sont lues les ordonnées observées, à est le méridien de l'endroit de l'observation (longitudes positives à l'est de Greenwich), (Vo), est la partie astronomique de la phase initiale calculée pour l'époque t_o au méridien λ_o(habituellement à minuit), d est l'indice de l'onde (pour les diurnes d = 1, pour les semi-diurnes d = 2). Pour les ondes {135}* et {245}* le calcul des valeurs théoriques s'effectue aussi d'après les formules (15) et (16); cependant dans ce cas les fonctions de la latitude et des grandeurs k et A y entrant seront représentées essentiellement par des expressions différentes puisque ces deux ondes sont issues du potentiel de la force génératrice de marée exprimée par une fonction sphérique du troisième degré.

Table 4.

En supplément, les petites ondes perturbatrices calculées du potentiel de la force génératrice de marée de la Lune et du Soleil sous l'aspect des expressions (14).

į		Amplitude		1871 . * j + 8					
	Onde	Coefficient numérique C	Fonction Géodésique	Phase initiale V _o	Mesure de la Phase par heure q	Période ∏≈ q	0,"01732	0,08226 mgl)	Mesure de la phase par 27 jours
	1	2	3	4	5	6	7 40 _{2,7} 8	8 +	v
On the supplement adjace. They will be the transportation and the supplement of the	{ 135} * { 145} { 245} *	0,0021 ,0024 ,0057	G_1^* G sin 2ϕ G_2^*	-3s _o +h _o +180° -2s _o +h _o +2p _o + 90° -3s _o +2h _o + 90°	13, 9523193	26, 8787 25, 8022 12, 6604	0,00004 ,00004 ,00010	0,00017 ,00020 ,00047	39°, 324 41, 103 65, 937

Remarque : Les fonctions géodésiques G₁* et G₂* sont représentées respectivement par les expressions (13) et (9).

Les expressions des fonctions de la latitude $\phi(\phi)$ des ondes {135}* et {245}* sont obtenues a partir des seconds membres de (13) et (9) où ces fonctions entrent comme facteurs pour le coefficient G. Quant aux formules pour le calcul des grandeurs k et A il est facile de les déduire au moyen de la représentation de l'oscillation de la verticale dans un azimut arbitraire et par deux composantes réciproquement perpendiculaires ([6] page 38). Nous réduisons ici ces formules sans conclusion.

Les ondes diurnes (onde {135}*):

* 3351 (17)

一个人的复数形式中的复数形式 医二氯甲烷基

$$\phi(\phi) = 0.72618 \cos \phi (1 - 5 \sin^2 \phi), \qquad (17)$$

$$\kappa \sin A \approx 0.36309 (1 - 5 \sin^2 \phi) \sin \alpha$$

$$\kappa \cos A \approx 0.36309 \sin \phi (1 - 5 \sin^2 \phi + 10 \cos^2 \phi) \cos \alpha$$
 (18)

Les andes semi-diurnes (onde {245}*):

$$\phi(\phi) \approx 2,59808 \sin \phi \cos^2 \phi \tag{19}$$

 $\kappa \sin A \approx 1,29904 \sin 2 \phi \sin \alpha$

$$\kappa \cos A \approx 1,29904 \cos \phi (2 \sin^2 \phi - \cos^2 \phi) \cos \alpha \tag{20}$$

Pour la facilité du calcul des valeurs théoriques des petites ondes perturbatrices d'après les formules (15) - (16) on donne dans les colonnes 7 et 8 de la table 4 les produits des facteurs numériques correspondants entrant dans les amplitudes de ces ondes.

Table 5

Coefficients $(F_c)_i$ et $(F_s)_i$ pour le calcul des influences des ondes $\{135\}^*$ et $\{145\}$ sur les ondes Q_i et Q_i .

	2000		Q	1	O ₁	
Onde p	perturbatrice		. A .	В.	Α .	В
	{ 135}*	h	- 22, 16 - 7, 91	+ 7,91 - 22,16	0	53 43
	[145]	ħ	© ©	n- 	- 19, 39 - 13, 30	+ 13, 30 - 19, 39

Table6

Coefficients $(F_e)_1$ et $(F_e)_1$ pour le calcul de l'influence de l'onde $\{245\}^*$ sur les ondes N_2 et M_2 .

7.0	общенно фермация в том в менения в него в него него него него него него него него	an garageth method of the control cont	N	2	M ₂		
	Onde perturbatrice		A	В	A	В	
9	12451+	jā.	- 33, 86 - 2, 68	+ 2,68 - 33,86	+ 5, 25 + 9, 70	- 9,70 + 5,25	

Dans les expressions développées pour V, données dans la table 1 du travail et dans la table 4 du présent article, l'élément de temps t manque. C'est pourquoi la valeur calculée d'après ces expressions (V), sera toujours reportée à minuit des jours initiaux (t = 0), habituellement pris comme époque initiale d'une série étudiée ll convient d'avoir toujours en vue cette circonstance quand pour l'une ou l'autre raison on n'a pas pris minuit comme instant initial mais l'heure arbitraire t des premiers jours de la série. Dans ce cas, pour que les phases des oscillations observées et théoriques soient égales entre elles, il faut ajouter à la valeur (V), calculée à minuit des jours initiaux, le laps de temps, écoulé de t = 0 et t = t c'est-à-dire

$$(V_{a})_{ta} = (V_{a})_{a} + q_{i}t_{a}.$$
 (21)

JARRANA LA

En conclusion l'auteur estime de son devoir d'exprimer sa sincère gratitude à V G. Balenko pour la série de remarques précieuses et pour l'étude du texte ainsi que pour les résultats fondamentaux de sa recherche sur la comparaison des différentes méthodes d'analyse harmonique.

BIBLIOGRAPHIE.

1. P.S. MATVEEV,

Analyse harmonique d'une série d'un mois d'observations de marées.

Travaux de l'Observatoire Gravimétrique de Poltava.

2. J. GOGUEL,

Tidal Gravity Corrections for 1958. Geophys. Prospecting, v. V, Suppl. N 1, Dec. 1957.

3. V.G. BALENKO et S.N.ZACHARTCHENKO

Quelques problèmes de comparaison des méthodes d'analyse harmonique des marées terrestres.

Présente revue page 20.

4. A.T. DOODSON,

The harmonic development of the tidegenerating potential, Proc. of the Roy. Soc. of London (A), v.100, 1921,pp.305-329.

5. H. JEFFREYS and R.O. VICENTE,

The theory of nutation and the variation of latitude, Monthly Notices of the Roy. Astr. Soc., v. 117, 2, 1957, pp. 142-173.

6. P.S. MATVEEV

Détermination des marées terrestres par les observations clinométriques à Stalinabad.

Travaux de l'Observatoire Gravimétrique de Poltava Tome VII.

PROGRAMME POUR LA COMPARAISON ET LA DISCUSSION D'UN ENSEMBLE DE RESULTATS D'ANALYSES HARMONIQUES DE MAREES TERRESTRES

pai

Paul PAQUET (Observatoire Royal de Belgique, Bruxelles).

L'accumulation des résultats d'analyse harmonique a conduit le Centre International des Marées Terrestres à établir un fichier de cartes perforées contenant le maximum de renseignements relatifs à ces analyses. Le mode de constitution de ce fichier a été décrit en [1].

L'utilité d'un tel fichier n'est pas uniquement de permettre une classification idéale, classification qui est certes fort importante, mais aussi de servir de base à des travaux de calculs portant sur plusieurs années de résultats d'enregistrements en de nombreuses stations.

Ce fichier s'enrichissant sans cesse, il y a lieu d'être à même de répéter fréquemment et rapidement les mêmes calculs pour tenir compte des résultats nouveaux. L'usage d'un ordinateur est donc indispensable.

Les travaux de calcul que l'on peut développer sur un tel fichier sont variés et le premier programme réalisé au Centre International des Marées Terrestres étudie les points résumés ci-dessous :

1º) Moyennes vectorielles et arithmétiques des résultats accumulés en une même station.

En principe les analyses harmoniques sont effectuées sur des périodes individuelles d'un mois d'observations. Elles permettent de déterminer avec plus ou moins de précision les constantes de sept ondes principales : M_2 , S_2 , N_2 , L_2 , K_1 , O_1 , O_1 . Il est évident que si l'on dispose d'un intervalle d'observations continues d'une année on pourra discuter les résultats mensuels et en tirer des valeurs annuelles par séparation des ondes principales ci dessus et d'ondes secondaires qui leur sont associées, séparation qui n'est pas réalisable sur un mois d'observations (exemple K_1 et P_1).

Malheureusement de tels intervalles sont encore rares et l'on doit dans bien de cas se contenter de calculer une valeur moyenne portant sur un nombre de mois restreint. Dans ce cas il convient évidemment de calculer la moyenne vectorielle.

Pour l'une ou l'autre onde principale le résultat d'une analyse harmonique peut être représenté dans un plan par un point de coordonnées polaires $(\delta, \ \delta)$ où δ désigne le rapport d'amplitude et δ la phase. Pour une série de n analyses nous disposons ainsi de n points $(\delta_1, \ \delta_1)$, $1 \approx 1, \ldots$ n, dont la moyenne vectorielle se calcule facilement par les relations :

$$\frac{1}{n} (\sum_{i} \delta_{i} \cos \phi_{i}) = \overline{\delta} \cos \overline{\phi}$$

et

$$\frac{1}{n}(\sum_{i} \delta_{i} \sin \phi_{i}) = \overline{\delta} \sin \overline{\phi},$$

dont la racine carrée de la somme des carrés nous fait connaître le rapport d'amplitude moyen δ , tandis que la phase moyenne $\overline{\delta}$ nous est donnée par

$$\operatorname{tg} \, \bar{\phi} = \frac{\bar{\delta} \, \sin \, \bar{\phi}}{\bar{\delta} \, \cos \, \bar{\phi}}$$

La moyenne arithmétique associée à la moyenne vectorielle est une indication évidente de la dispersion des phases ϕ_i par rapport à la phase nulle; pour obtenir une indication plus précise de la dispersion il conviendrait de calculer l'écart-type; nous avons préféré lui substituer le calcul pour toutes les ondes principales des variances des amplitudes et des phases qui nous sont d'un intérêt direct pour le calcul des coefficients de corrération

2º Coefficients de corrélation.

Si δ_i et δ_j , ($i=j=1\dots n$), désignent les rapports d'amplitude de deux ondes principales, d_1 et d_2 les moyennes arithmétiques, rappelons qu'un coefficient de corrélation est donné par :

$$\rho = \frac{\left(\frac{1}{n} \sum_{i}^{\Sigma} \delta_{i} \delta_{j}\right) - d_{1}d_{2}}{\left(\operatorname{var}\left(\delta_{i}\right) \operatorname{var}\left(\delta_{j}\right)\right)^{1} 2}$$

où le numérateur représente la covariance des éléments (δ_i, δ_j) , tandis que le dénominateur désigne la racine carrée du produit des variances suivantes :

$$\operatorname{var}(\delta_i) \approx \frac{1}{n} \sum_{i=1}^{\infty} (\delta_i - d_i)^2$$

$$\operatorname{var}(\delta_{j}) = \frac{1}{n} \sum_{j} (\delta_{j} - d_{2})^{2}$$

Le calcul des coefficients de corrélation entre les divers rapports d'amplitude pris deux à deux et entre les diverses phases prises également deux à deux est susceptible de donner des informations du type :

- a) Il répondra à la question de savoir si l'on peut déceler certaines corrélations entre les nombreux résultats obtenus et trouvant probablement leur origine dans un effet géophysique, un tel effet devrait évidemment être contrôlé par les résultats de nombreuses stations.
- b) Une série de coefficients de corrélation uniformément ou anormalement élevés entre les rapports d'amplitude permet de déceler l'existence d'une imprécision dans les étalonnages.
- c) La même anomalie des coefficients de corrélation entre les phases peut révéler une marche irrégulière ou mal contrôlée du garde-temps.

Le programme a été écrit en langage SPS. Le temps de calcul et d'impression des résultats selon le modèle ci-après est de 12 minutes pour la discussion de 80 analyses harmoniques, de 6,5 minutes pour 10 analyses harmoniques. Les calculs du tableau ci-après sont basés sur les résultats publiés par P. Melchior en [2] pp. 86-87.

Si l'on fait abstraction du temps de lecture du programme et du temps d'impression des résultats, on peut dire que l'ordinateur demande 5 secondes pour introduire les résultats d'une analyse complète (7 ondes) dans les calculs.

Références.

- [1] Paul MELCHIOR Dispositions prises par le Centre International des Marées Terrestres en vue d'une classification systématique des résultats de mesures. Bull Inf. Marées Terrestres N° 27 pp. 607-611, 1962.
- [2] Paul MELCHIOR Mesures faites avec le gravimètre Askania G.S. 11 n° 145 en 1960 et 1961.
 (Obs. Royal de Belgique Bulletin d'observations des Marées Terrestres Vol. 1 fasc. 1 juin 1962.).

	ANALYSE	PAR STATIO		702 -			
UCCLE BRU	IXELLES	BELGIQUE			GRAVIMI	ETRE ASKANI	A 145
		MOYENNE	VECTORIEL	LEET VARIAN	CE N	= 0080	
	M2	\$2	N2	L2	K1	01	QF
AMPL. MOY.	T176	1227	T160	T301	7160	1166	T203
PHAS. MOY.	0000	0120	5075	0373	0143	0131	0605
MOY.AR.AM.	1177	T230	T177	7406	T161	T167	T258
MOY.AR.PH.	5000	0125	0119	0452	0143	0131	5226
VAR. AMPL.	0001	0003	0034	0324	0001	0003	0 969
VAR. PHAS.	0 001	0003	0034	0175	0000	5 001	0037
ENTRE	ES AMP	COEFFIC	IENT DE CC	DRRELATION			
	S 2	N2	L2	K1	01	Q 1	, /
M2	0 302	0242	5253	₫596	5475	0157	
\$2	i i	5178	8141	0311	0165	0117	
N2			Т 006	5445	0032	2900	
L2				5005	6217	0179	
K1			y^{*}		0324	<u>0</u> 272	
01						0277	,
					1 / A		
ENTE	LES PHA			•			•

ENTRE	LES PHAS	ES			•	
•	52	N2	-2	K1	01	01
M2	0242	0 075	0055	Ō19 ō	0096	5 077
\$2		0097	0043	02 6	5 015	6800
N2			0013	0033	0313	5 431
1.2				0045	0021	0 045
K1					5408	0 048
01					•	0 099

DOCUMENTS RECUS AU CENTRE INTERNATIONAL

BELGIQUE	Basècles	puits	du 7/5 au 31/7 1962.
8383E3 (JB (2°C t-	Sclaigneaux 1	P.H. ORB N° 31 EW	du 7/2 au 12/3 1962 du 31/3 au 13/5 1962
		P.H. ORB N° 9 NS P.H. ORB N° 30 NS	du 25/2 au 25/3 1962 du 26/4 au 1/8 1962
	Sclaigneaux 2	P.H. ORB N° 10 EW P.H. ORB N° 13 NS	du 15/6 au 23/7 1962 du 10/1 au 13/7 1962
	Warmifontaine 1	P.H. ORB N° 11 EW P.H. ORB N° 4 NS	du 23/3 au 2/7 1962. du 26/1 au 23/3 1962.
	Warmifontaine 2	P.H. ORB N° 12 EW	du 25, 3 au 9/5 1962
	ljccle	G. Ask. 145 P (*) G. Ask. 160	du 9/3 au 21/6 1962 du 25/2 au 8/5 1962
ITALIE	Padova	G. Ask. 108	du 30/6/59 au 18/1/60. du 22/2/60 au 1/6/60.
U.S.A.	Austin .	G. LCR	du 19/1 au 29/2 1960. du 31/5 au 4/7 1960. du 2/8 au 29/8 1960 du 28/2 au 3/4 1961
			du 4/7 au 31/7 1961 du 20/3 au 16/4 1962.

Nouvelles des stations.

Uccle - Bruxelles, Belgique

Automation d'un gravimètre.

Le gravimètre Askania 145 a été révisé par le constructeur et doté d'un ressort de mesure deux fois plus fin de manière à augmenter la précision des étalonnages.

A l'Observatoire Royal de Belgique on a adopté à l'enregistreur Lange un potentiomètre de très bonne linéarité lu par voltmètre électronique. Les lectures sont perforées dans une bande 8 canaux directement dépouillée et analysée par l'ordinateur IBM 1620

Les lectures de g peuvent être faites toutes les secondes. En pratique on fait une lecture chaque minute.

Le dépouillement des trois premiers mois d'observations continues est en cours.

^(*) cf. Note sur la station d'Uccle dans le présent BIM.

CONTRACTS RECUSAL OF SOME AND CONTRACTOR

	1 8 £594.}	មេ១៖ ១ឆ្នាំមេល់ ខ្មែ	· · · · · · · · · · · · · · · · · · ·
	Ma Morris and And	Solaigneaux	
at in a second of the second o		Losson Margaret	
	ing and an extreme of the second of the sec	Confident Consu	
	and the Alberta Co	and the second of the second	
with the second of the second		· · · · · · · · · · · · · · · · · · ·	
A Security of the Security of		e estad i	\$ 3 \ \tau \tau
AND THE RESERVE TO A STREET OF THE STREET OF		in ent	
19 to a first to be a first to			
and the second of the second o			

Apple in a consecutive of y

သည် ကို မိုးရိုးရိုးများ မြောင်းသည် မြောင်းသည်။ မြောင်းသည် မြောင်းသည် မြောင်းသည်။ မြောင်းသည် မြောင်းသည် မြောင် (၂) (၂) (၂) (၂) (၂) (၂) (၂) (၂) (၂) (၂)	gregoritation (1995) y 20 april 10 g ∰ filippi Herentenan (1996) y 20	20 g 12 1 1	A Paragraphic Control of the second
Burton Burton School (1997) Bu	Constitute of the Constitution of the Constitu	१८८४ में हेर्नुहोर करें १८७४ में १९८४	Similar 4)
the lecture of the second per this family and the second per this contraction is the second per this contraction of the second per this contraction is the second per this contraction of the second per this contraction is the second per this contraction of the second per this contraction is the second per thin second per this contraction is the second per thin second p	一个一种转点,只能够坚定的全体体制,这种优美做的大量的对	and the second second	
dur in I die Augustinier ein Reich	ಎರ್.೮ ಕಲ್ಲಿ ಕಿಚಿ∮ಅರ್ಚ - ಕಾಗ್ರಿಗೆ		e de la suita de la compansión de la compa
the state of the s	5200 DO 1 2300 \$19.5	The House State of the State of	ransi kancera arak 🗀 🖦 a
	िवेदा अन्दर्भाष्ट्रमा	. H. Miles	Mark She of the layer