MAREES TERRESTRES.

BULLETIN d'INFORMATIONS

n° 14

20 janvier 1959

Association Internationale de Géodésie Commission Permanente des Marées Terrestres.

> Editeur: Dr. Paul MELCHIOR Observatoire Royal de Belgique 3, Avenue Circulaire Bruxelles 18

> > Belgique.

R. LECOLAZET

(Institut de Physique du Globe de Strasbourg)

Le développement harmonique des déviations périodiques théoriques de la verticale.

A.T. DOODSON a donné [1] un développement purement harmonique du potentiel générateur de la marée, extremement utile pour l'analyse précise des observations. On peut en déduire le développement des variations théoriques de la pesanteur [2] [3] et celui des déviations théoriques de la verticale [2]. Dans le présent article nous reprenons les calculs de J. BARTELS [2], concernant la déviation de la verticale, avec des notations un peu différentes, en tenant davantage compte de l'ellipticité de la terre. Nous explicitons finalement les termes principaux du développement harmonique des composantes de la déviation de la verticale, nécessaires à l'application de notre méthode d'analyse harmonique [3].

2 - Expression précise du coefficient G du développement de A.T.DOODSON.

Avec les notations de A.T. DOODSON [1] et en négligeant les termes du 4ème ordre, le potentiel générateur de la marée lunaire est :

$$V = G\left[\frac{2}{3} \left(3 \cos^2 \theta - 1\right) \left(\frac{c}{r}\right)^3 + \frac{2}{3} \left(5 \cos^3 \theta - 3\cos \theta\right) \left(\frac{c}{r}\right)^4 \left(\frac{\ell}{c}\right)\right] ,$$

que nous écrirons :

$$V = G \left(W_2 + W_3 \right) ,$$

en posant

$$W_{2} = \frac{2}{3} (3 \cos^{2} \sqrt{-1}) (\frac{c}{r})^{3}$$

$$W_{3} = \frac{2}{3} (5 \cos^{3} \sqrt{-3} \cos^{3} \sqrt{(\frac{c}{r})^{4}}) (\frac{\rho}{c})^{4}$$

Dans ces expressions \Im désigne la distance zénithale géocentrique de la lune, r la distance des centres de la terre et de la lune, $\frac{1}{c}$ la valeur moyenne de $\frac{1}{r}$, Γ le rayon vecteur du point de la terre considéré. Dans le terme W_3 , $\frac{1}{c}$ peut être considéré comme constant et égal à la parallaxe horizontale équatoriale moyenne de la lune (en ce qui concerne les déviations de la verticale)

G est un coefficient dont l'expression primitive est :

(1)
$$G = \frac{3}{4} \frac{\mu M \rho^2}{c^3}$$

où µ désigne la constante de la gravitation et M la masse de la lune.

L'usage général, auquel s'est conformé A.T. DOODSON, veut que l'on transforme l'expression (l) précédente en faisant intervenir la masse E de la terre, le rayon "moyen" de celle-ci et la valeur "moyenne" de la pesanteur, que nous désignerons ici respectivement par $P_{\rm m}$ et ${\rm g}_{\rm m}$. On pose à cet effet :

$$g_{\rm m} = \frac{\mu_{\rm E}}{\rho_{\rm m}^2}$$

et G prend la forme :

$$G = \frac{3}{4} \quad \frac{M}{E} \quad \frac{g_m \quad p_m^2 \quad p \quad 2}{c^3}$$

On fait ainsi disparaître le produit μ M que l'on ne connaît pas avec précision pour faire apparaître le rapport $\frac{M}{E}$ que l'on connaît mieux, mais du meme coup on fait intervenir la pesanteur "moyenne" dont la valeur numérique est mal définie parce qu'elle n'a pas de signification physique et le rayon "moyen" de la terre, ce qui est une complication inutile.

Pour l'étude des marées, la valeur numérique du coefficient G a peu d'importance; il n'en est pas de meme pour celle des marées terrestres : le facteur de $\frac{M}{E}$ ne doit pas etre calculé en y introduisant la pesanteur "moyenne"

mais en utilisant une relation entre une valeur numérique de g bien déterminée et la masse de la terre. Cette relation est naturellement la formule classique qui donne l'expression de la pesanteur à l'équateur d'une terre idéale, de meme masse que la terre réelle, et limitée par une surface de niveau en forme d'ellipsoide de révolution. Avec les notations du présent article et en négligeant les termes d'ordre supérieur au second, cette formule est la suivante ([4], p.49)

$$\chi_{e} = \frac{ME}{2} (1 + \alpha - \frac{3}{2} d - \alpha^{2} - \frac{1}{2} \alpha d + \frac{9}{4} d^{2})$$

a désigne le rayon équatorial, α l'aplatissement et d l'expression où ω est la vitesse angulaire de rotation de la terre.

Les valeurs numériques sont ([4], p. 52):

$$\chi_{e} = 978,049$$
; $\alpha = \frac{1}{297,00} = 0,0033670$; $\alpha = 0,0034678$.

On a donc

$$\mu = \frac{979,837 \text{ a}^2}{\text{E}}$$

D'autre part, comme nous n'envisageons ici que des dérivations dans le plan horizontal, on peut poser que le rayon vecteur du point considéré de latitude vraie λ , d'altitude h, est, avec une approximation plus que suffisante :

$$\rho = a \left(1 - \alpha \sin^2 \lambda + \frac{h}{a}\right)$$

Portant les expressions précédentes de μ et de ρ dans la formule (1), il vient :

$$G = \frac{979,837 \times 3}{4} \quad \frac{M}{E} \quad \frac{a^3}{c^3} \cdot a \left(1 - 2 \operatorname{d} \sin^2 \lambda + \frac{2h}{a}\right)$$

 $\frac{a}{c}$ est le sinus de la parallaxe horizontale équatoriale moyenne de la lune, égal à 0,0165929.

En prenant avec A.T. DOODSON, $\frac{E}{M}=81,53$ et en introduisant une valeur conventionnelle ronde de g, égale à 980, à la place du nombre peu commode 979,837, l'expression de G devient finalement :

(2)
$$G = 0,420183.10^{-7} \times 980 \times a \left(1 - 20 \sin^2 k + \frac{2h}{a}\right)^{\frac{\pi}{2}}$$

Nous rappelons que a désigne le rayon équatorial de l'ellipsoïde international ($a=6.378.388 \, m$), < l'aplatissement, > la latitude vraie (ou géographique) du lieu considéré et h son altitude.

En vue des calculs ultérieurs, nous n'avons pas inclus le nombre 980 ni la valeur du rayon équatorial dans le facteur numérique. Bien entendu le nombre de chiffres significatifs de ce facteur ne doit pas faire illusion, en raison, mais en raison seulement, de l'incertitude sur la valeur numérique de $\frac{E}{M}$.

Expression des composantes de la déviation de la verticale.-

Comme en Géodésie, nous désignerons par } et v les composantes nord et est de la déviation de la verticale :

ξ est alors positif si le fil à plomb est dévié vers le sud et η est positif s'il est dévié vers l'ouest.

$$G = 0,420183.10^{-7} \times 980 \times \frac{e^2}{a}$$

3-

^{* :} Cette expression de G n'est utilisable que pour le calcul des déviations de la verticale. Si l'on voulait calculer aussi la dérivée verticale du potentiel, il faudrait employer l'expression :

La surface de niveau qui contient le lieu considéré, d'altitude h, peut etre assimilée à un ellipsoïde de révolution, de rayon équatorial a+h, d'aplatissement (Les rayons de courbure R_1 et R_2 de l'ellipse méridienne et du parallèle du lieu de latitude vraie λ , de latitude géocentrique γ , sont, en négligeant les termes du second ordre :

$$R_{1} = a \left(1 - 2\Omega + 3\alpha \sin^{2}\lambda + \frac{h}{a}\right)$$

$$R_{2} = \beta \cos \psi = a\left(1 - \alpha \sin^{2}\lambda + \frac{h}{a}\right) \cos \psi$$

V désignant toujours le potentiel générateur de la marée, si nous désignons encore par L la longitude occidentale du lieu et par g l'accélération de la pesanteur en ce lieu, les expressions de get de proposition sont les suivantes :

$$\begin{cases} = -\frac{1}{g} & \frac{\partial V}{R_1 \partial \lambda} \\ \gamma = \frac{1}{g} & \frac{\partial V}{R_2 \partial L} \end{cases}$$

Or V renferme en facteur le coefficient G ; R_1 et R_2 ont en commun le facteur a $(1+\frac{h}{a})$; par conséquent g et g ont en commun le facteur

$$\frac{G}{ga (1 + \underline{h})}$$

dont l'expression devient en tenant compte de la formule (2) :

$$0,420183.10^{-7} \times \frac{980}{g} (1 - 20(\sin^2 k) + \frac{h}{a})$$

Nous prendrons comme unité, pour ξ et η le dix millionième de seconde d'arc (10⁻⁷"). Le coefficient précédent, que nous désignerons par F', devient alors :

$$F' = 86669 \times \frac{980}{g} (1 - 2 \% \sin^2 \lambda + \frac{h}{a})$$

Première partie du développement harmonique de

Nous avons, avec les notations introduites précédemment :

$$\begin{cases} = -\frac{1}{gR_1} \frac{\partial}{\partial \lambda} \left[G \left(W_2 + W_3 \right) \right] \end{cases}$$

OH

$$\xi = \xi_1 + \xi_2$$

avec

$$\begin{cases} 1 = -\frac{G}{gR_1} & \frac{\partial (W_2 + W_3)}{\partial \lambda} \\ 2 = -\frac{1}{gR_3} & \frac{dG}{d\lambda} & (^{W}2 + ^{W}3) \end{cases}$$

gla est évidemment la partie largement prépondérante de get gla peut etre considéré comme un terme correctif (il provient du fait que la verticale non troublée n'est pas "géocentrique").

Nous allons chercher d'abord le développement harmonique de

Tenant compte des expressions de G et de R_l et de la définition précédente de F', il vient d'abord

$$\begin{cases} 1 = -(1 + 2\alpha - 3\alpha \sin^2 \lambda) \text{ F}' \frac{\partial (W_2 + W_3)}{\partial \lambda} \end{cases}$$

Le développement harmonique de W_2+W_3 a été donné par A.T. DOODSON mais la latitude λ qui y figure est la latitude géocentrique que nous désignons ici par γ . La relation entre γ et λ étant

$$f = \lambda - d \sin 2\lambda$$
,

il vient

$$\frac{d\Psi}{d\lambda} = 1 - 2 \propto \cos 2\lambda = 1 - 2 \propto + 4 \propto \sin^2 \lambda$$

et:

$$\int_{1} = -F \frac{\partial (W_2 + W_3)}{\partial \psi} ,$$

en posant

$$F = (1 + \alpha \sin^2 \lambda) F^{\circ} = 86669 \times \frac{980}{g} (1 - \alpha \sin^2 \lambda + \frac{h}{a})$$

Le développement harmonique de , se déduit donc simplement du développement harmonique de V, donné par A.T. DOODSON, en remplaçant

G _O	par	$\frac{3}{2}$ F sin $2\sqrt{}$
Gl	**	-2 F cos 2 \$\frac{1}{2}\$
G ₂	**	F sin 2 ψ
G O	***	3,35409 F cos ψ (5 sin ² ψ - 1) *
G'1	18	$0,72618 \text{ F sin } \psi (15 \cos^2 \psi - 4)$
G*2	88	2,59808 F cos ψ (2 - 3 cos ² ψ)
G ¹ 3	11	3 F cos ² γ sin γ

5.- Deuxième partie du développement harmonique de 🖔 .

Considérons maintenant le terme correctif 2, défini au n° précédent :

$$\begin{cases} 2 = -\frac{1}{gR_1} & \frac{dG}{d\lambda} (W_2 + W_3) \end{cases}$$

En comparant avec l'expression de V, on voit que le développement harmonique de $\begin{cases} 2 \\ 2 \end{cases}$ se déduit du développement du potentiel en remplaçant simplement G par $-\frac{1}{gR_1}$ $\frac{dG}{d\lambda}$. Calculons ce coefficient.

Nous avons d'abord, très sensiblement :

$$\frac{dG}{d\lambda} = -2 \, \alpha \, G \, \sin 2 \, \lambda$$

On peut écrire ensuite, étant donné que $\frac{G}{gR_1}$ et F ne diffèrent que par des termes du second ordre, de même que λ et ψ :

$$-\frac{1}{gR_1}$$
 $\frac{dG}{d\lambda} = 2 \alpha F \sin 2 \gamma$

D'après J. BARTELS [2] le coefficient numérique de ce facteur serait 3/2 au lieu de 3,35409. Cela résulterait d'une erreur de calcul de A.T.DOODSON, corrigée par W. HORN; cf [2], note en bas de la page 751-Personnellement, nous n'avons pas retrouvé cette erreur.

La forme de ce coefficient permet de confondre simplement en un seul développement ceux de $\begin{cases} 1 \\ 2 \end{cases}$. Les termes du développement de $\begin{cases} 4 \\ 3 \end{cases}$ étant d'amplitude relativement petite par rapport à ceux du développement de $\begin{cases} 4 \\ 3 \end{cases}$ ment de $\begin{cases} 4 \\ 3 \end{cases}$ on peut négliger les termes correspondants du développement de $\begin{cases} 4 \\ 3 \end{cases}$

6 - Développement harmonique complet de }

D'après ce qui précède, le développement harmonique de } se déduit finalement du développement du potentiel donné par A.T. DOODSON en remplaçant

G₀ par
$$X_0 = \frac{3}{2} F \sin 2 \psi \left[1 + \frac{2}{3} (1 - 3 \sin^2 \psi) \right]$$

G₁ $X_1 = -2F (\cos 2 \psi - 4 \sin^2 2 \psi)$

G₂ $X_2 = F \sin 2 \psi (1 + 2 4 \cos^2 \psi)$

et G'₀, G'₁, G'₂, G'₃ par les expressions données au n° 4 et que nous désignerons respectivement par X'₀, X'₁, X'₂, X'₃.

7 - <u>Développement harmonique de 1</u>

Nous avons :

ou

$$\eta = \frac{1 + \alpha \sin^2 \lambda}{\cos \gamma} \quad \text{F'} \quad \frac{\partial (W_2 + W_3)}{\partial L}$$

Les arguments des ondes du développement de W_2 et W_3 sont fonctions de la longitude par l'intermédiaire de $\mathcal T$, heure lunaire moyenne locale $(\frac{d\mathcal T}{dL}=-1)$. Le développement de $\mathcal T$ ne comporte pas d'onde à longue période. En ce qui concerne les autres ondes, leur amplitude contient toujours en facteur cos $\mathcal T$; le facteur commun à tous les termes du développement de devient ainsi :

$$(1 + \alpha \sin^2 \lambda) F' = F$$

Nous retrouvons le coefficient F que nous avons défini précédemment à propos du développement de

Le développement harmonique de y se déduit finalement du développement de A.T. DOODSON

l°) en remplaçant

G₁ par
$$Y_1 = 2 \text{ F sin } \psi$$

G₂ " $Y_2 = 2 \text{ F cos } \psi$

G'₁ " $Y'_1 = 0,72618 \text{ F } (1 - 5 \text{ sin}^2 \psi)$

G'₂ " $Y'_2 = 2,59808 \text{ F sin } 2\psi$

G'₃ " $Y'_3 = 3 \text{ F cos}^2 \psi$

2°) en remplaçant le cosinus des arguments par leur sinus et leur sinus par leur cosinus changé de signe, ce qui revient à retrancher $\frac{\pi}{2}$ à tous les arguments.

8 - Principales ondes diurnes et semi-diurnes des développements de let le .

En vue de l'application de notre méthode d'analyse harmonique aux déviations observées de la verticale, nous avons dressé les tableaux des principales ondes diurnes et semi-diurnes des développements harmoniques de jet j, comme nous l'avons fait pour la marée gravimétrique théorique ([3], tableaux VII et VIII) - Ces tableaux sont les tableaux I, II, III et IV suivants.

Chaque onde y figure par le symbole (argument number) de A.T. DOODSON, par l'expression de son argument en fonction des variables astronomiques \mathcal{T} , s, h, p, N', p_1 et par son amplitude H_1 , produit du facteur numérique de A.T.

^{*} Pour la définition et le calcul des valeurs numériques de ces variables, cf. le mémoire de A.T. DOODSON[1], celui de J. BARTELS[2] ou notre publication[3].

DOODSON , (éventuellement changé de signe) par l'un des coefficients géodésiques (si le coefficient ne figure pas expressément il est égal à X_1 , X_2 , Y_1 , Y_2 pour les tableaux I, II, III, IV, respectivement).

Dans l'expression des arguments nous avons ajouté ou retranché \mathbb{T} ou $\frac{\pi}{2}$ pour ramener toutes les ondes à la forme

où H est l'amplitude et x l'argument.

Pour calculer les coefficients géodésiques qui dépendent en premier lieu de la latitude du lieu considéré, on doit calculer d'abord :

$$F = 86669 \times \frac{980}{g} (1 - 4 \sin^2 \lambda + \frac{h}{a})$$

où λ est la latitude vraie du lieu, h son altitude, g l'accélération de la pesanteur en ce lieu, a le rayon équatorial de l'ellipsoïde international, égal à 6.378.388 mètres et α l'aplatissement, égal à 0,0033670 (en général $\frac{h}{a}$ est naturellement tout à fait négligeable).

On calcule ensuite la latitude géocentrique par la relation $\psi = \lambda - 4 \sin 2 \lambda$

(à 45° de latitude la différence entre ψ et λ est maximum et égale à 12' environ, ce qui n'est pas négligeable, contrairement à ce que nous avons écrit à propos de la marée gravimétrique [3]).

On calcule enfin les coefficients géodésiques par les formules déjà écrites et que nous reproduisons ci-dessous :

$$X_1 = -2 \text{ F } (\cos 2 \psi - \alpha \sin^2 2 \psi)$$
 $X'_1 = 0,72618 \text{ F } \sin \psi (15 \cos^2 \psi - 4)$
 $X_2 = \text{F } \sin 2 \psi (1 + 2 \alpha \cos^2 \psi)$
 $X'_2 = 2,59808 \text{ F } \cos \psi (2 - 3 \cos^2 \psi)$

$$Y_1 = 2 \text{ F sin } \psi$$
 $Y'_1 = 0,72618 \text{ F } (1 - 5 \sin^2 \psi)$
 $Y_2 = 2 \text{ F cos } \psi$
 $Y'_2 = 2,59808 \text{ F sin } 2 \psi$

Les amplitudes H₁ sont exprimées avec une unité égale au dix millionième de seconde d'arc (0,000 000 1").

BIBLIOGRAPHIE.

- A.T. DOODSON, The harmonic development of the tide-generating potential. Proc. Roy. Soc., Sér. A, 100, 1921 305 et suiv.

 ou Développement harmonique du potentiel générateur de la marée. Rev. Hydr. Int., XXXI, n° 1, mai 1954, 37-61.
- 2 J. BARTELS, Gezeitenkräfte. Handbuch der Physik, XLVIII Bd, Geophysik II, Springer Berlin 1957, pp. 734 774
- R.LECOLAZET, La méthode utilisée à Strasbourg pour l'analyse harmonique de la marée gravimétrique.

 B.I.M., n° 10, ler février 1958, 153-166.
- W.A.HEISKANEN,
 F.A. VENING MEINESE, 1958.

TABLEAU I Principales ondes diurnes de la déviation théorique de la verticale $\text{Composante nord (}\xi\text{)}$

Symboles de	Argument number				Argumen	t					Amplitude
Darwin	Doodson	ı T	s	h	р	N¹	P ₁	π	72		$H_1 \times 10^5$
	115855	1	- 4	0	3	Ó	0		**		108 × ₁
	117655	1	-4	2	1	0	0		19		278
20	125745	1	-3	0	2	-1	0		. -		180
2Q ₁	- 7.00	. 1	-3	0	2	0	0		-		955
G, .	127545	1	-3	2	0	-1	0		-		218
V 9	555	1	-3	2	0	0	0		***		1153
	135555	1	-2	0	0	0	0	+			211 x ⁶ 1
Q ₁	645	1	-2	0	1	-1	0		-		1360 x ₁
	655	1 -	-2	0	1	0	0		-		7216 258
P4	{ 137445	1	-2	2	-1	-1	0				1371
, 4	1 455	1	-2 -1	. 2	-1 2	- 0 0	0		+		113
	143755	1		-2	0	0	1		+		130
in the last	144556	1	-1 -1	-1 0	0	-2	0		+		218
	145535 545	1	- 1 - 1	0	0	-2 -1	. 0				7105
01	555	1	-1	. 0	0	0	0		_		37689
	655	1	-1	0	ì	0	0	+			108 x ¹
	755	1	1	ő	2	Ŏ	Ö	,	+		243 x ₁
	146554	1	- 1	1	0	0	-1		-		115
.	1 10555	1	-1	2	0	0	0		+		491
MP_1	147555	1	- 1	2	0	1	0		-		107
	153655	1	0	-2	1	0	· O		+		278
	155445	1	0	0	- 1	- 1	. 0		+		197
M	455	. 1	0	0	- 1	0	0		+		1065
M ₁	555	1	0	0	0	0	0	+			661 x ³ 1
	655	-1	0	0	1	0	0		. +	₩.	2904 A
	665	1	0	0	1	1	0		+		594
\mathbf{x}_{1}	157455	1	0	2	-1	0	0		+		566
	1 465	1	0	2	-1.	1	0		+		124
TL	162556	1	1	-3	. 0	0	1		-		1029 199
Pl	163545	1	1	-2	0	- 1 0	0 0		+		17584
	l 555	1 1	1	-2 -1	0	0	-1		+		147
s_1	{ 164554 556	1	1	-1 -1	0	0	1		+		423
	(165545	1	1	0	0	-1	Ó				1050
·	555	1	i	0	0	0	. 0		+		53050
K	565	1	1	0	0	1	0		+		7182
	575	i	î	Ö	Ö	2	0				154
w.	166554	1	î	1	Ö	Õ	-1		+		423
ϕ_{a}^{1}	167555	ī	1	2	0	0	0		+		756
	(173655	1	2	-2	1	0	0		+		566
Θ_A	665	1	2	-2	1	1	0		+		112
	175455	1	2	0	-1	0	. 0		+		2964
Jl	465	1	2	. 0	-1	1	.0		+		587
	555	1	2	0	0	0	0 `	+			241 x ⁰ 1
so ₁	183555	1	3	-2	0 , '	0	0		+ .		492 X,
1	185355	1 -	3	0	-2	0	0		+		2.40
00	5,55	1	3	0	0	0	0		+		1623
00_1	565	1	3	0	0	1	0		+		1039
	575	1	3	0	0	2	0		+	•	218
	195455	1	4	0	- 1	0	0		+		311
	465	1	4	0	- 1	1	0		+		199

Nota : L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

											- 설명 :	Amplitude	
Symboles	Argument				Argument					*			
de	number Doodson	T	s	h	р	N ^t	p ₁		π	$\frac{\pi}{2}$	- 1 	H ₁ x 10 ⁵	
Dorwin	Dogazou		, ~		F		- 1			L		•	
												0.50	_
	225855	2	-3	0	3	0	0						^x 2
MNS ₂	227655	2	-3	2	1	0	0					671	
	(235655	2	-2	0	1	0	0			+		156	x 2
2N ₂	755	2	-2	0	2	0	0					2301	*2
με	237555	2	-2	2	0	0	0					2777	
	(245555	2	-1	0	0	0	0			+		569	x ¹ 2.
N ₂	645	2	-1	0	1	-1	0		+			648	[*] 2
	655	2	-1	0	1	0	0	100 June 200				17387	
	247455	2	-1	2	-1	0	0				•	3303	
	253755	2	0	-2	2	0	0		+			273	
	254556	2	0	-1	0	0	1		+			314	
	(255545	2	0	0	0	-1	0		+		ə	3386	
M ₂	{ 555	2	0	0	0	0	0					90812	
	256554	2	0	1	0	0	-1					276	
λ_2	263655	2	1	-2	1 1	0	0		+ .			670	
2	(265455	2	1	0	-1	0	0		+			2567	
	555	2	1	0	0	0	0			- 1		525	ж ^в 2
L ₂	655	2	1	0	1	0	0					643	\mathbf{x}_{2}
				_	,		0					283	
т2	665	2	1	0	1	1 0	1					2479	
* 2 S	272556	2	2	-3	0						*	42358	
S ₂	273555	2	2	-2		0	0					354	
- R ₂	274554	2	2	-1		0	-1		+			11506	
	(275555	2	2	. 0		0	0					3423	
K ₂	565	2	2	0		1	0					3423	
	575	2	2	0		2	÷ , 0						
κJ ₂ °	285455	2	3	0	-1	0	0					643	
	465	2	3	0	- 1	1	0					280	

Nota : L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

TABLEAU III Principales ondes diurnes de la déviation théorique de la verticale $\text{Composante est } \left(\ \, \right)$

Symboles	Argument			Ā	rgument						Amplitude
de	number	_	s	h	р	N¹	p ₁	π	$\frac{\pi}{2}$		$H_1 \times 10^5$
Dorwin	Doodson	r	3		P		- 1		2		
				0	3	0	0	+			108 Y ₁
	115855	1 1	-4 -4	- 2	1	0	Ō	+			278
	117655	1	-3	0	2	-1	0	+			180 955
2Q ₁	{ 125745 755	ì	-3	ō	2	0	0	+			218
-1	§ 127545	î	-3	2	0	-1	. 0	+			1153
OT4	555	ī	-3	2	0	0	0	+			211 VI
	(135555	1	-2	0	0	0	, 0		+		$\frac{1360}{7216}$ Y ₁
Q_1	6.4.5	1	-2	0	1	-1	0	+			7216
•	655	1	-2	0	1	0	0 0	+ +			258
•		- 1	-2	2	-1	-1 0	0	+			1371
Pa	L 455	1	-2	2	-1	. 0	0	•			113
	143755	. 1	-1	-2	2 0	. 0	1				130
	144556	ļ	-1 -1	-1 0	0	-2	Ō				218
	145535	1	-1	0	. O	-1	0 .	+		_/	7105
	545	.1 1	-1	0	0	0	0	+			37689 108. Y'
∞_1	555 655	1	-1	ŏ	1	0	0		+		243 Y ₁
	755	1	-1	0	2	0	0				115
	146554	ī	-1	1	0	0	-1	+			491
	(147555	l	-1	2	0	0	0				107
MP ₁	565	1	-1	2	0	1	0 0	+			250 278
·	153655	1	0	-2	1	0	0		*		197
	(155445	1	0	0,	-1 -1	-1 0	0				1065
	455	1	0	0	-1 0	0	0		. +		661 Y'1
M ₁	₹ 555	1	0	0 0	1	0	0				2964 Y ₁
•	655	1	0	0	1	1	Ö				594
	665	1 1	. 0	2	-1	ō	0				566 124
\mathbf{x}_1	157455 465	i	. 0	2	-1	1	0				1029
1	162556	i	1	-3	0	0	1	+			199
	163545	ī	1	-2	0	-1	0				17584
Pl	555	1	1	-2	0	0	0	+			147
	§ 164554	1	1	- 1	0	0	-1				423
s_1	556	- 1	1	-1	. 0	0	í 0	+			1050
	(165545	1	1	0	0	-1 0	0	•			53050
72	555	1	1	. 0	0	1	. 0				7182
K ₁	565	1	1 1	0	0	2	0	+			154
.01	575	1	1	1	Ő	ō	· -1				423 7 <u>56</u>
$arphi_{q}$	166554 167555	1	1	2	- 0	0	0				566
	(173655	1	2	-2	1	0	0				112
$\theta_{\scriptscriptstyle\mathcal{A}}$	665	1	2	-2	1	1	0				2964
- 4	(175455		2	0	-1	0	0				58 .7
T	465		2	0	- 1	1	0		+ 1		241 Y'
J ₁	555		2	0	0	0	0		т.		492 Y,
so_1	183555		. A.S	-2	0	0	0 0				240
1	(185355	. 1	3	0	-2	0	. 0				1623
00	} 555		3	0	0	1	. 0				1039
$\circ \circ_1$	565		3	0	. 0	2	0				218
	575		3 4	0	-1	0	Ō				311
	195455		4	0	-1	1	0				199
	465	1	~±		•					•	

Nota : L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

Symboles de	i	Argument number			Þ	rgument				าส	Amplitud H ₁ × 10	
Darwin		Doodson	て	s	h	р	N,	pl	η	2	H1 x 10	
		225855	2	-3	· 0	3	0	0				Y ₂
MNS ₂		227655	2	-3	2	1	0	0		-	671	,
4	(235655	2	-2	0	1	0	0				4
2N ₂	1	755	2	-2	0	2	0	0		· -	2301	Y ₂
Je2		237555	2	-2	2	0	0.0	0		-	2777	
12	(245555	2	-1	0	0	0	0			569	
N ₂	`)	645	2	-1	0	1	-1	0		+		Y ₂
2	L	655	2	-1	0	1	0	0		- "	17387	
		247455	2	-1	2	-1	. 0	0		-	3303	
		253755	2	0	-2	2	0	0		+	273	
		254556	2	0	-1	0	0	1		+	314	
	(255545	2	0	0	0	-1	0		+	3386	
M ₂	{	555	2	0	.0	0	0	0		-	90812	
		256554	2	0	1	0	0	- 1		-	276	
λ ₂		263655	2	1	-2	1	0	0		+	670	
2	1	265455	2	1	0	-1	0 •	0 -		+.	2567	•
	\	555	2	1	0	0 ·	0	0	+		525	~ ~
L ₂	1	655	2	1	0	1	0 1	0		-	6 43	$^{\mathrm{Y}}2$
		665	2	1	0	1	1	0		-	283	
т.		272556	2	2	-3	0	0	1		-	2479	
$\overset{\mathtt{T}}{s_{2}^{2}}$		273555	2	2	2	0	0	0		-	42358	
		274554	2	2	-1	0	.0	-1		+	354	
R_2	,	275555	2	2	0	0	0	0			11506	
r	1	565	2	2	0	0	1	0			3423	
K ₂	1	575	2	2	0	0	2	0		, -	372	
KI		285455	2	3	0	-1	0	0		,	643	
$^{\mathrm{KJ}}2$		465 '	2	3	0	-1	. 1	0		-	280	

Nota: L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

Deuxième Colloque International sur les marées terrestres.

Les Comptes Rendus de ce Colloque ont été imprimés dans la Série Géophysique des Communications de l'Observatoire Royal de Belgique (n° 47, 183 pages). Leur distribution a été faite en décembre 1958.

Première Réunion de la Commission Permanente des Marées Terrestres de l'Association Internationale de Géodésie.

(troisième Colloque International).

La Commission a accepté la proposition des professeurs MARUSSI et MORELLI de tenir cette réunion à Trieste du 6 juillet au 11 juillet 1959. Une visite à la station Grotta Gigante est prévue dans le cadre des séances de travail. Dans le but d'établir à ce moment une liste exacte des stations et de leur équipement, on priera les intéressés de communiquer les modifications ou addenda aux descriptions de stations parues dans le B.I.M. au Secrétariat de la Commission.

Secrétariat de la Commission Permanente.

Toute correspondance relative au Bulletin d'Informations et aux comptes rendus des Colloques Internationaux doit être adressée comme suit :

Dr. P. Melchior Secrétaire de la Commission Permanente des Marées Terrestres Observatoire Royal de Belgique Bruxelles 18 - Belgique.

Catalogue des données reçues dans les Centres mondiaux de données à la date du 1-1-1959.

: PAYŞ	STATION	INC	STRUMENT	:PERIODES D'OBSERVATIONS COMMUNIQUEES
	:Uccle :(Observatoire)		Ask. n° 145	du 27 juin au 15 décembre 1958
: <u>Canada</u>	: Meanook		N.A. 85	du 15 avril 1958 au 1 octobre 1958
	: Ottawa	. G	N.A. 85 Heiland 30	:du 29 juin 1957 au 21 octobre 1957 ::du 4 octobre 1958 :
	Resolute	. G	N.A. 85	:du 30 octobre 1957 au 20 janvier : 1958 :
Hongrie	Tihany	G	Heiland GSC 3-66	:juillet, octobre 1957, :avril 1958
		: G	Heiland GSC-40	:janvier 1958
Inde			Worden 164 N.A. 159	:19 octobre au 24 novembre 1957 : 8 novembre au 23 novembre 1957 :
•	: Gummidipundi		Worden 164 N.A. 159	:18 janvier au 22 février 1958 : :18 janvier au 22 février 1958 :
			Worden 164 N.A. 159	: 1 mars au 2 avril 1958 : 1 mars au 2 avril 1958 :
			Worden 164 N.A. 159	:11 décembre 1957 au 11 janvier 1958 : :26 décembre 1957 au 11 janvier 1958 :
<u>Iran</u>	Téhéran	G	Ask. n° 119	: 8 janvier au 8 mars 1958 : :14 mai au 12 juin 1958 : : 9 juillet au 23 juillet 1958 : 8 août au 22 août 1958 : 3 septembre au 2 octobre 1958 :
<u>Italie</u>		PH		3: l janvier au 31 mai 1958 3: l janvier au 31 mai 1958

		•	· · · · · · · · · · · · · · · · · · ·	
PAYS	STATION	: II	NSTRUMENT	:PERIODES D'OBSERVATIONS COMMUNIQUEES
Japon	Chiba	: G	Ask. n° 105	: 1 juillet 1957 au 12 avril 1958
	: Kanozan	: G	Ask. n° 105-111	:29 avril au 22 juillet 1958
•	Matsushiro	: G	Ask. n° 111	:25 août au 27 septembre 1957
• • • • • • • • • • • • • • • • • • • •	Naze	: G	Ask. n° 111	: 1 avril au 4 mai 1958
• • • • • • • • • • • • • • • • • • •		•	Ask. n° ///	: 8 octobre au 10 novembre 1958
•	Shionomisaki	: G	Ask. n° ///	:18 janvier au 21 février 1958
Royaume Uni de Grande Bretagne		PH	(Est-Ouest) Milne-Shaw (Nord-Sud) Milne-Shaw (Est-Ouest) Zöllner	: 1 juillet au 31 décembre 1957 : 1 juillet au 31 décembre 1957 : 1 juillet au 31 décembre 1957
	Krasnaya Pakhra	G	Ask. n° 124	:24 décembre 1957 au 23 janvier 1958
•	Poulkovo	: G	: Ask. n° 124	:27 avril 1958 au 27 mai 1958
Venezuela	Cagigal	G	Ask. n° 99	envoi des résultats de l'analyse harmonique de trois mois centrés sur les dates suivantes: 20 mars 1958 14 septembre 1958 13 octobre 1958

G : Gravimètre

PH: Pendule horizontal.

Résultats d'analyses harmoniques.

VENEZUELA

	ر 20 20	-3-1958 k		_~ 14-9	-1958 K	13-10-1958		
K ₁	ه 0,245	-42°71		1,162	- 2°25	9 9	1,040	+13°24
01	0,663	- 9,329		0,952	- 5°27		0,829	+15°57
Q ₁	0,628	-26°81		0,983	-19°45		1,322	+ 0°92
M ₂	1,205	+ 1°86	0	1,137	- 1°05		1,163	- 0°55
s ₂	1,284	+ 5°39		1,135	- 0°46	0	1,128	- 2°14
N ₂	1,319	- 0°94	0	0,910	- 1°13	0	0,945	+ 2°34

(méthode Lecolazet).

U.R.S.S.		
Krasnaya Pakhra		
Gravimètre Askania	n ®	724

U.R.S.S. Krasnaya Pak Gravimètre A		124	ı				<u>U.R.S.S.</u> <u>Poulkovo</u> Gravimètre Askania n° 124
K ₁	ر 1,149	k + 1°9	8 - 1 -	1958 1,146	k + 1°9		12 - 5 - 1958 1,205 + 2°4
ol	1,138	+ 3°8	0	1,134	+ 3°9		1,166 + 4°4
M ₂	1,176	+ 8°2	Ø Ø	1,190	+ 7°1	0	1,222 + 3°3
s ₂	1,114	+ 3°5	•	1,091	+ 4°6		1,362 - 2°2
N ²	1,250 (méth.	+ 7°0 Pertsev)	© ©	1,019 (méth.	- 3°7 Lecolazet)	8	0,881 + 6°1 (méth. Pertsev)

BIBLIOGRAPHIE

(97) <u>K.WADATI</u>	On the sinking of the Ground (Scientia LII, vol XCIII N. DLII- Aprile 1958, pp. 93-98)
(98) <u>A. DECAE</u>	Implantation de l'Eurotron du CERN à Genève Boll. di Geodesia sous presse
(99) x ·	Géodésie Souterraine Organis. Europ. Recherche nucléaire août 1958
(100) <u>A. DECAE</u>	Opérations métrologiques relatives à l'implantation du synchrotron à protons du Cern à Meyrin. CERN- PS/AED 6 févr. 1957.
(101) R.A. VICENTE	A Influência da constituição interior da Terra no valor das nutações. Lisboa, Tipografia Matémática LDA, 1956.

Données reçues aux Centres Mondiaux - Addendum (29-1-58)

Hongrie	0 0	Tihany	0 0	G	Heiland	GSC-66		du 29 juin au 1 août 1958
 	° ====		•				• .	5 年 日
Italie	: N	lonteponi	0		74°231			l juir au 2
	•		•		346°34°	S	9	octobre 1958