

N° 10

1 février 1958

C S A G I

GROUPE XIII (GRAVIMETRIE)
COMMISSION POUR L'ETUDE DES MAREES TERRESTRES

Editeur :

Dr. Paul MELCHIOR
Observatoire Royal de Belgique
3, Avenue Circulaire
U C C L E

Belgique.

R. LECOLAZET

La méthode utilisée à Strasbourg pour l'analyse harmonique de la marée gravimétrique

> Instructions pratiques pour l'application de la méthode à un mois d'observations horaires.

Avant-Propos.

Les bases théoriques de la méthode d'analyse harmonique, dont nous nous proposons d'exposer ici le simple mode d'emploi, ont déjà fait le sujet ou l'un des sujets de trois publications (1). La méthode, telle qu'elle a été décrite dans le premier article, ou la pratique avait été quelque peu sacrifiée à la théorie, présentait quelques défauts entachant la précision des résultats. B. Pertzev, N. Parijski, M. Kramer ont montré (2) que le nombre des ondes subsidiaires envisagées dans cette méthode n'était pas suffisant et nous sommes entièrement d'accord avec eux sur ce point. Nous avions d'ailleurs perfectionné notre méthode (Cf article n° 3 cité à la note l ci-dessous), avant que cette critique justifiée ne lui fût faite, par un calcul plus précis des facteurs d'amplitude et par l'utilisation, pour la comparaison des marées gravimétriques observée et théorique, du développement harmonique de A.T. Doodson au lieu de celui de Darwin.

^{(1) 1°} R. Lecolazet, Application à l'analyse des observations de la marée gravimétrique, de la méthode de H. et Y. Labrouste, dite par combinaisons linéaires d'ordonnées. Ann. de Géoph., t. 12, fasc. 1, janvier-mars 1956, pp. 59-71.

^{2°} R. Lecolazet, Note sur l'analyse harmonique. Comm. de l'Observatoire Royal de Belgique, N° 114, Série Géoph., n° 39, 1957, pp. 48-56.

^{3°} R. Lecolazet, Enregistrement et analyse harmonique de la marée gravimétrique à Strasbourg. Ann. de Géoph., t. 13, fasc. 3, juill.-sept. 1957, pp. 186-202.

⁽²⁾ B. Pertzev, N. Parijski, M. Kramer, Comparison of different méthods of harmonic analysis of bodily tides, B.I.M. nº 7, août 1957, pp. 101-103.

C'est la pratique de notre méthode, ainsi modifiée, qui est exposée dans les lignes suivantes. On y trouvera tout ce qui est nécessaire pour effectuer les différentes opérations le plus rapidement possible et aussi avec le moindre risque d'erreur de calcul, car une vérification est prévue à chaque étape de l'analyse harmonique proprement dite.

Le Schéma I et les Tableaux I à VI donnent les coefficients des combinaisons linéaires à effectuer successivement à partir des données. Les Tableaux VII à X servent à calculer, selon notre méthode, les ondes de la marée gravimétrique théorique "homologues" des ondes trouvées par l'analyse (1). Enfin, dans les Tableaux XI à XX figurent, à titre d'exemple de calcul, les différentes étapes de l'analyse complète d'un mois d'observations horaires de la marée gravimétrique à Strasbourg.

I.- Analyse harmonique proprement dite

1. - Disposition des données.

La méthode d'analyse requiert la donnée de 715 observations horaires successives; les heures doivent obligatoirement être exprimées en temps universel. Ces observations sont disposées, de la manière habituelle, dans un tableau à 24 colonnes horaires et 30 lignes journalières (2) (Cf exemple, Tableau XI). Les combinaisons journalières étant appliquées à intervalles de 21 heures, on encadrera ou l'on soulignera chaque 21me observation à partir de la première. Le tableau peut naturellement débuter à n'importe quelle heure (dans l'exemple, Tableau XI, il débute le ler avril à 9 h. T.U., mais c'est uniquement par convenance personnelle). Cependant il ne faut pas oublier que les résultats de l'analyse sont toujours relatifs à l'heure centrale du tableau, qui est égale à l'heure du début + 14 jours 21 heures (dans l'exemple, le 16 avril 1956 à 6 h. T.U.).

⁽¹⁾ Ces mêmes tableaux peuvent aussi servir directement, si l'on préfère cette méthode, au calcul des corrections tenant compte des ondes subsidiaires (ou perturbatrices), mais ceci ne sera pas envisagé dans cet article.

⁽²⁾ Dans notre ler article des Annales de Géophysique, nous avions considéré, pour faciliter la compréhension de la méthode, un tableau à 43 colonnes et 33 lignes avec répétitions. Dans la pratique, il n'est nullement besoin d'un tableau aussi spécial, il suffit de confectionner des grilles convenables pour l'application des combinaisons journalières.

2. - Combinaisons journalières.

Découper dans une feuille de papier, à l'échelle convenable, deux grilles semblables à celles qui figurent au Schéma I; ce sont les grilles "diurne" et "semi-diurne"; les signes + seront inscrits à l'encre noire, les signes - à l'encre rouge. L'échelle du schéma est la même que celle du Tableau XI: les grilles que l'on peut décomper dans ce schéma s'appliquent directement sur ce tableau.

Préparer un tableau semblable au Tableau XII. Il comporte 9 colonnes et 33 lignes.

Dans les deux premières colonnes, inscrire les dates et heures des observations qui sont soulignées dans le tableau des données.

Appliquer la grille diurne sur le tableau des données de telle sorte que la lère observation soulignée apparaisse à travers la grille, en regard des flèches (la grille déborde en général le tableau à gauche et à droite). Additionner tous les nombres qui apparaissent à travers la grille et qui sont affectés du signe + (il y en a toujours 16) et inscrire le total à la première ligne de la colonne "+" (colonne 3) du Tableau XII. Additionner tous les nombres affectés du signe - (il y en a aussi toujours 16) et inscrire le total dans la colonne "-" (colonne 4). La différence des deux nombres s'inscrit dans la colonne "série diurne" (colonne 5).

Effectuer les mêmes opérations avec la grille semi-diurne appliquée de la même manière. Les nombres obtenus s'inscrivent dans les colonnes N° 6, 7 et 8 du Tableau XII.

Vérification des calculs. Faire la somme des deux nombres portés aux colonnes 3 et 4 et la somme des deux nombres des colonnes 6 et 7. Ces deux sommes doivent être égales et leur valeur commune est portée dans la colonne "Somme" (colonne n° 9) pour être utilisée ultérieurement à l'étude de la dérive et des ondes à longue période (1)

⁽¹⁾ Sur chaque grille, le terme central est compté deux fois: une fois avec le signe +, une fois avec le signe -. Dans les différences (colonnes 5 et 8) ce terme s'élimine donc, conformément à la méthode exposée dans le ler article des Annales de Géophysique (note l page 2), mais dans la somme il est compté deux fois, et, en outre, dans cette somme figurent tous les termes avec le signe +. Cette somme est donc une combinaison linéaire du ler type où le terme central est compté deux fois. On vérifiera facilement que cette combinaison élimine bien toutes les ondes de marées, sauf celles à longue période qui sont au contraire amplifiées. L'"état" du gravimètre se trouve aussi amplifié.

Continuer les opérations en décalant à chaque fois les grilles de 21 heures.

C'est sur les 33 nombres des séries diurne et semi-diurne (colonnes n° 5 et 8) que seront effectuées les combinaisons mensuelles.

3. - Combinaisons mensuelles.

Les combinaisons mensuelles figurent aux Tableaux I et II. Elles sont au nombre de 20, plus quatre combinaisons auxiliaires (Σ_1) , (Σ_2) , (Σ_2) , (Σ_2) , destinées à la vérification des calculs. Les coefficients de ces combinaisons sont égaux à 0, + l ou - l et ne figurent donc que par leur signe dans les Tableaux I et II; exception est faite pour les combinaisons Σ dont les coefficients peuvent atteindre 5 en valeur absolue.

Préparer un tableau semblable au Tableau XV, où l'on inscrira les résultats des combinaisons mensuelles.

Les 12 combinaisons linéaires du Tableau I seront appliquées successivement à la série diurne et celles du Tableau II à la série semi-diurne. Pour cela, il est commode de découper chacune des colonnes des Tableaux I et II.

Exemple. Si l'on applique la combinaison linéaire (K_1) du Tableau I à la série diurne du Tableau XII de l'exemple, on obtient le nombre 8385 inscrit dans le Tableau XV, à l'intersection de la ligne K_1 et de la colonne (), nombre que l'on désigne par le même symbole (K_1) que celui de la combinaison mensuelle qui a servi à le calculer.

Appliquant ensuite la combinaison linéaire (K_1) ' à la même série diurne, on obtient le nombre (K_1) ' égal à - 13817, inscrit dans le Tableau XV à l'intersection de la ligne K_1 et de la colonne ()'.

4.- Combinaisons définitives (1)

Elles figurent dans les Tableaux III à VI et sont désignées par des symboles entre crochets. Les combinaisons du Tableau III s'appliquent à la colonne des nombres (K_1) , (O_1) , (Q_1) , (M_1) , (J_1) du Tableau XV, celles du Tableau IV à la colonne des nombres

⁽¹⁾ Cette dernière étape de l'analyse correspond à la résolution des systèmes en A et en B (Cf ler article cité note l page 2).

 $(K_1)', (O_1)', (Q_1)', (M_1)', (J_1)'$ du même Tableau XV. Les combinaisons des Tableaux V et VI s'appliquent respectivement à la colonne des nombres $(M_2), (S_2), (N_2), (L_2), (2N_2)$ et à celle des nombres $(M_2)', (S_2)', (N_2)', (L_2)', (2N_2)'$ du Tableau XV.

Les 24 résultats numériques (dont 4 destinés à la vérification des calculs comme à l'étape précédente), s'incrivent dans un tableau semblable au Tableau XVI. Ils sont désignés par des symboles identiques à ceux des combinaisons définitives qui ont servi à les calculer.

Les résultats des combinaisons doivent être multipliés par 10⁻⁷ pour être exprimés avec la même unité que les données (Tableau XI). Dans l'exemple, l'unité des données est le microgal, mais l'unité employée dans le Tableau XVI est le millimicrogal ou nanogal (10⁻⁹gal), de sorte que les résultats des combinaisons définitives n'ont pas été multipliés par 10⁻⁷ mais par 10⁻⁴. De plus, on a arrondi les nombres à l'entier le plus voisin. Nous recommandons cette façon d'opérer.

L'analyse harmonique proprement dite est ainsi terminée.

L'exemple donné comporte cependant deux tableaux de plus, les Tableaux XVII et XVIII. Cette addition, qui tient uniquement à notre propre façon d'opérer, a été rendue nécessaire par le fait que les données du Tableau XI n'ont pas été corrigées de l'influence des variations de la pression atmosphérique sur le gravimètre lui-même. Nous avons donc fait l'analyse harmonique de la pression atmosphé-

rique, dont les résultats figurent au Tableau XVII et nous avons corrigé le Tableau XVI, le coefficient de correction appliqué étant de - 3,1 microgal par mm de mercure. Les résultats définitifs de l'analyse sont ceux du Tableau XVIII.

II. - Comparaison de la marée gravimétrique observée et de la marée gravimétrique théorique.

5.- Les nombres homologues.

L'analyse précédente nous a fourni 20 nombres :

$$\begin{bmatrix} \mathbb{K}_1 \end{bmatrix}, \dots, \begin{bmatrix} \mathbb{L}_1 \end{bmatrix}; \begin{bmatrix} \mathbb{K}_1 \end{bmatrix}', \dots, \begin{bmatrix} \mathbb{L}_1 \end{bmatrix} ';$$
 $\begin{bmatrix} \mathbb{M}_2 \end{bmatrix}, \dots, \begin{bmatrix} \mathbb{2}\mathbb{N}_2 \end{bmatrix}; \begin{bmatrix} \mathbb{M}_2 \end{bmatrix}', \dots, \begin{bmatrix} \mathbb{2}\mathbb{N}_2 \end{bmatrix} '.$

Si cette analyse avait porté, non sur les observations horaires du gravimètre mais sur les valeurs horaires correspondantes de la marée gravimétrique théorique, nous aurions également trouvé 20 nombres que nous appelons nombres homologues des nombres précédents et que nous désignons par les mêmes symboles mais affectés de l'indice 1 :

$$\begin{bmatrix} \mathbf{K}_1 \\ \mathbf{1}_1 \end{pmatrix}, \dots \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{1}_1 \end{bmatrix}, \quad \vdots \begin{bmatrix} \mathbf{K}_1 \\ \mathbf{1}_1 \end{pmatrix}, \dots \begin{bmatrix} \mathbf{L}_1 \\ \mathbf{1}_1 \end{bmatrix}, \\ \begin{bmatrix} \mathbf{M}_2 \\ \mathbf{1}_1 \end{bmatrix}, \dots \begin{bmatrix} \mathbf{2N}_2 \\ \mathbf{1}_1 \end{bmatrix}, \dots \begin{bmatrix} \mathbf{N}_2 \\ \mathbf{1}_1$$

L'intérêt de la considération de ces nombres réside dans le fait que les rapports d'amplitude et les déphasages entre les ondes observées et les ondes théoriques résultent de la comparaison entre le système des 20 nombres trouvés par l'analyse et le système des 20 nombres homologues (1).

Les nombres homologues pourraient être calculés d'après leur définition même (2), mais cela nécessiterait le calcul de 715 valeurs horaires de la marée gravimétrique théorique. La théorie de l'analyse harmonique fournit une autre méthode, beaucoup plus rapide, pour le calcul de ces nombres (3). Elle nécessite seulement la connaissance du développement harmonique de la marée gravimétrique théorique. C'est cette méthode que nous utilisons et qui est exposée ci-dessous.

6.- <u>Le développement harmonique de la marée gravimétrique</u> théorique.

Il se déduit facilement de celui du potentiel des forces de marée. Nous avons pris, pour ce dernier, le développement rigoureusement harmonique de A.T. Doodson (4) en ne conservant que les ondes de plus grande amplitude qui sont néanmoins au nombre de 79 : 52 ondes diurnes et 27 ondes semi-diurnes.

⁽¹⁾ Cf 2ème article cité à la note 1 de la page 154.

⁽²⁾ Ce calcul pourrait être mené à bien rapidement à l'aide d'un calculateur électronique.

⁽³⁾ Cf 2ème article cité à la note 1 de la page 154.

⁽⁴⁾ A.T. Doodson, The harmonic development of the tide-generating potential. Proc. Roy. Soc., Série A, 100, 1921, pp. 305 et suiv. ou: Développement harmonique du potentiel générateur de la marée. Rev. Hydr. Int. XXXI, n°1, mai 1954, pp. 37-61.

Les Tableaux VII et VIII donnent l'argument et l'amplitude de chacune de ces ondes ainsi que leur vitesse angulaire. Des multiples de \mathbb{T} et de $\frac{\mathbb{T}}{2}$ ont été ajoutés aux arguments de A.T. Doodson pour tenir compte du changement de signe lorsqu'on passe du potentiel à la variation de la pesanteur et pour mettre chacune des ondes sous la forme

où H_1 désigne l'amplitude et x l'argument.

Calcul des arguments

Les symboles entrant dans l'expression de l'argument sont ceux de A.T. Doodson.

🔭 : heure lunaire moyenne locale, convertie en angle,

s : longitude moyenne de la lune,

h : longitude moyenne du soleil,

p : longitude du périgée lunaire,

N': longitude du noeud ascendant de la lune, changée de signe,

P₁ : longitude du périhélie.

On doit calculer la valeur de chaque argument, à l'heure centrale du tableau des données du gravimètre. Cette heure étant prise comme origine des temps, chaque onde se met sous la forme

$$H_1 \cos (\omega t + \gamma_1)$$

- où \mathscr{V}_1 est précisément la valeur calculée de l'argument- ou sous la forme équivalente, qui est celle utilisée dans les calculs ultérieurs :

$$A_1 \cos \omega t + B_1 \sin \omega t$$
,

ou

$$A_1 = H_1 \cos \beta_1$$
 et $B_1 = -H_1 \sin \beta_1$

Ce sont finalement les valeurs de \mathbf{A}_1 et \mathbf{B}_1 qui servent au calcul des nombres homologues.

Toutes les grandeurs figurant dans l'expression des arguments peuvent être trouvées dans les éphémérides astronomiques.

Toutefois les formules servant à les calculer sont les suivantes

(Brown, cité par A.T. Doodson):

$$s = 277^{\circ}, 0248 + 481267^{\circ}, 8906 T + 0^{\circ}, 0020 T^{2}$$

 $h = 280^{\circ}, 1895 + 36000^{\circ}, 7689 T + 0^{\circ}, 0003 T^{2}$

$$p = 334^{\circ}, 3853 + 4069^{\circ}, 0340 T - 0^{\circ}, 0103 T^{2}$$

$$N' = 100^{\circ}, 8432 + 1934^{\circ}, 1420 T - 0^{\circ}, 0021 T^{2}$$

$$P_1 = 281^{\circ}, 2209 + 1^{\circ}, 7192 T + 0^{\circ}, 0005 T^2$$

où T est le temps exprimé en siècles de 36525 jours solaires moyens, à partir du 1er janvier 1900 à Oh. T.U.

L'expression servant au calcul de T est

$$T = 15^{\circ} t + h - s - L,$$

formule où t est l'heure T.U. origine (heure centrale du tableau des observations) et L la longitude W par rapport à Greenwich.

Si l'on doit faire plusieurs analyses mensuelles successives, il suffit de calculer les arguments une seule fois et ensuite d'ajouter à chacun d'eux le multiple convenable de sa vitesse angulaire. Les vitesses angulaires figurent également dans les Tableaux VII et VIII.

Les arguments étant calculés, on doit ensuite chercher leur cosinus et leur sinus (ce dernier devant être changé de signe).

Calcul des amplitudes.

Celles-ci dépendent uniquement de la latitude du lieu d'observation.

L'amplitude de chacune des ondes figure aux Tableaux VII et VIII comme le produit d'un facteur numérique par un facteur littéral : $^{\text{C}}_{1}$, $^{\text{C}}_{2}$ ou $^{\text{C'}}_{2}$ (si le facteur littéral ne figure pas expressément, il est égal à $^{\text{C}}_{1}$ pour les ondes diurnes, à $^{\text{C}}_{2}$ pour les ondes semidiurnes). Les symboles $^{\text{C}}_{1}$, $^{\text{C'}}_{1}$, $^{\text{C}}_{2}$, $^{\text{C'}}_{2}$ sont les "geodetic coefficients" de A.T. Doodson convenablement transformés.

Si l'on désigne par C l'expression

$$C = \frac{3\mu M P}{c^3}$$

où µ est la constante de l'attraction universelle ;

M, la masse de la lune ;

c, sa moyenne distance à la terre ;

ho, le rayon vecteur de la terre au point d'observation, les "geodetic coefficients" c_1 , c_1 , c_2 , c_2 s'expriment en fonction de c_1 et de la latitude géocentrique c_2 :

Si l'on désigne par λ la latitude vraie, on a :

$$\Upsilon = \lambda - \frac{1}{\sqrt{297}} \sin 2\lambda$$

mais cette correction, qui est inférieure à , peut être négligée et l'on peut confondre latitude vraie et latitude géocentrique.

D'autre part, le rayon vecteur ${\cal P}$ de l'ellipsoîde terrestre est aussi une fonction de la latitude :

$$P = a (1 - \frac{1}{297} \sin^2 \lambda),$$

mais si l'on donne à l'a valeur moyenne du rayon terrestre, l'erreur commise est encore négligeable et l'on peut admettre :

$$C = 16,455.10^{-5}$$
 gal

Il est commode d'exprimer l'amplitude des ondes de la marée théorique en nanogals (10^{-9} gal) ainsi que leurs composantes A_1 et B_1 Exemple. A l'aide des Tableaux VII et VIII, nous avons calculé les composantes A_1 et B_1 des ondes de la marée gravimétrique théorique à Strasbourg en prenant comme heure origine l'heure centrale du Tableau XI, soit 6h. T.U. le 16 avril 1956.

Les composantes A_1 et B_1 figurent, avec les arguments et les amplitudes qui ont servi à les calculer, dans les Tableaux XIII et XIV.

Les données utilisées dans le calcul des arguments et des amplitudes sont les suivantes :

λ =	48°35'	L =	- 7°46¹ = - 7°,7667;
~ =	28°,2662	S =	93°,8600 ;
h =	24°,3595	p =	104°,7664 ;
N =	109°,5355	p ₁ =	282°,1888 ;
c ₁ =	8,163	C1 =	-10,312
^C 2 =	7,201	C ₁ =	14,014

Les quatre dernières grandeurs sont exprimées en centièmes de milligal (10⁻⁵gal). Le coefficient C₁' étant négatif, on l'a remplacé par sa valeur absolue mais on a ajouté 180° aux arguments des ondes dont l'amplitude contient C₁' en facteur, ce qui nous a semblé plus commode pour les calculs.

7.- Calcul des nombres homologues.

Les nombres homologues sont obtenus en appliquant les combinaisons linéaires figurant dans les Tableaux IX et X, aux colonnes des composantes \mathbb{A}_1 et \mathbb{B}_1 résultant des opérations précédentes (1).

Les combinaisons $[K_1]_1$, $[O_1]_1$, $[Q_1]_1$, $[M_1]_1$, $[J_1]_1$ du Tableau IX, appliquées successivement à la colonne des composantes A_1 des ondes diurnes, donnent les nombres désignés par les mêmes symboles que les combinaisons qui ont servi à les calculer.

Les combinaisons $\begin{bmatrix} K_1 \end{bmatrix}_1^1$, ... $\begin{bmatrix} J_1 \end{bmatrix}_1^1$ sont appliquées successivement à la colonne des composantes B_1 des ondes diurnes et donnent respectivement les nombres $\begin{bmatrix} K_1 \end{bmatrix}_1^1$, ... $\begin{bmatrix} J_1 \end{bmatrix}_1^1$.

Les combinaisons du Tableau X s'appliquent de la même manière, soit à la colonne des composantes A_1 des ondes semi-diurnes, soit à la colonne des composantes B_1 des mêmes ondes.

Les 20 résultats de ces combinaisons sont inscrits dans un tableau analogue au Tableau XIX.

⁽¹⁾ Les coefficients de ces combinaisons ne sont autres que les coefficients \checkmark et β (Cf article n°2 cité à la note (1), page 2).

Exemples. Si l'on applique la combinaison $[K_1]_1$ du Tableau IX à la colonne A_1 du Tableau XIII, on trouve :

$$[K_1]_1 = 18831$$

La combinaison $[S_2]_1^!$ du Tableau X, appliquée à la colonne B_1 du Tableau XIV donne le nombre $[S_2]_1^!$ égal à - 6689, inscrit dans le Tableau XIX à l'intersection de la ligne S_2 et de la colonne $[S_1]_1^!$.

8.- Comparaison des ondes observées et des ondes théoriques. Calcul des rapports d'amplitude et des différences de phase.

Les nombres $\left[K_1\right]$ et $\left[K_1\right]$ ' par exemple peuvent être considérés, avec une bonne approximation, comme les composantes A et B d'une onde complexe formée par la superposition des ondes K_1 et P_1 de la marée gravimétrique réelle. Cette onde complexe a, à l'heure origine adoptée (heure centrale du tableau des observations), une amplitude

et un angle de phase
$$\mathcal{Y}$$
 tel que
$$\cos \mathcal{Y} = \frac{\begin{bmatrix} K_1 \end{bmatrix}}{H}, \qquad \sin \mathcal{Y} = -\frac{\begin{bmatrix} K_1 \end{bmatrix}}{H}$$

Il est d'ailleurs plus rapide de calculer d'abord l'angle par la relation

$$tg = -\frac{\begin{bmatrix} K_1 \\ K_1 \end{bmatrix}}{\begin{bmatrix} K_1 \end{bmatrix}}$$

puis l'amplitude H par l'une des relations

$$H = \frac{\left[\frac{K_1}{\cos y}\right]}{\cos y}$$

$$H = -\frac{\left[\frac{K_1}{\sin y}\right]^s}{\sin y}$$

L'amplitude H_1 et la phase \mathcal{S}_1 de l'onde homologue de la marée gravimétrique théorique s'obtiennent de la même façon à partir des nombres $\begin{bmatrix} K_1 \end{bmatrix}_1$ et $\begin{bmatrix} K_1 \end{bmatrix}_1$.

On peut alors calculer le rapport d'amplitude $\frac{H}{H_1}$ et le déphasage $\sqrt{-}$ entre l'onde observée et l'onde théorique. Ce rapport et ce déphasage sont voisins de ceux que l'on obtiendrait pour l'onde K_1 si celle-ci pouvait être isolée (1).

On opère ensuite de la même façon pour les ondes O_1 , Q_1 , M_2 , S_2 , N_2 . Les erreurs sont trop grandes pour qu'on puisse appliquer ce procédé aux ondes M_1 , J_1 , L_2 , $2N_2$ mais les valeurs calculées M_1 , M_1 , M_1 , M_1 , etc... seront conservées avec celles qui se rapportent aux six ondes principales pour servir à l'analyse globale de plusieurs mois d'observation.

Exemples. Les amplitudes H et H_1 et les phases \mathcal{P} et \mathcal{P}_1 des 6 ondes principales ainsi que les rapports d'amplitude et les déphasages correspondants figurent au Tableau XX. Toutes ces grandeurs ont été calculées à partir des données des Tableaux XVIII et XIX.

⁽¹⁾ On obtiendrait le même rapport d'amplitude et le même déphasage en corrigeant les nombres $\left[K_1\right]$ et $\left[K_1\right]$ ' de l'influence de l'onde P_1 , dans l'hypothèse, toujours adoptée, que les ondes K_1 et P_1 réelles se comportent respectivement de la même façon par rapport aux ondes K_1 et P_1 théoriques.

COMBINAISON DIURNE

COMBINAISON SEMI-DIURNE

++

+

SCHEMAI

Grilles diurne et semi-diurne (à découper et appliquer sur le tableau XI)

Tableau II

0	1	ı	ı	0	+	+	+	0	1	ı	ı	0	+	+	+	0	ı	ı	ı	0	+	+	+	0	ŀ	ı	1 ,:	0	+	+	+	0	(K ₁)
0	ł	ı	+	+	+	ı	i	0	+	+	ı	ı	i	+	+	0	ı	ı	+	+	+	ı	i	0	+	+	i	ı	ı	+	+	0	(01)
0	+	+	ı	ı	+	+	0	ı	0	+	+	1	ı	+	+	0	1	1	+	+	ı	ı	0	+	0	ı	ı	+	+	ı	ı	0	(21)
0	- +	+	0	i	1	0	+	+	+	1	1	-1	0	+	+	0	1	ı	0	+	+	+	ı	ı	ı	0	+	+	0		ı	0	(M ₁)
0	+	+	+	+	0	ı	1	i	ı	0	0	+	+	+	+	0	ı	ı	ı	ı	0	0	+	+	+	+	0	ı	ı	1	ı	0	(J ₁)
0	+	+	0	0	₹	0	0	!	0	0	!	₩.	0	₽	₽	0	Ç,	<u>Q</u>	0	₹	₹	0	0	+	0	0	₺.	۰.۰	0	Ļ	1	0	(Σ_1)
+	+	0	ı	ı	1	0	+	+	+	0	ı	1	ı	0	+	+	+	0	1	ı	1	0	+	+	+	0	ı	ı	ı	0	+	+	(K ₁)
+	0	ı	ı	0	+	+	í	ı	ı	+	4	0	ı	i	+	+	+	1	1	0	+	+	!	i	ı	+	+	0	ı	ı	0	+	(01)
ı	0	+	+	1	ı	+	+	0	1	1	+	+	i	1	0	+	ó	ı		+	+		ı	0	+	+	ı	1	+	+	0	ì) (Q1)
																											_						-
i	ı	+	+	+	0	1		0	+	+	0	ı	ı		+	+	+	8		i	0	+	+	0	í	ı	0	+	+	+	1	ı	(M ₁)* (
I	1	0	+	+	+	+	+	0	1	1	i	1	0	+	+	+	+	+	0	1	1	ı	ı	0	+	+	+	+	+	0	i	ı	(J ₁) 1
1	1	+	+ 1	0	0	\$	+	oʻ	I →	0	0	₩ 1	-4	8	+4	4	+4	80	-4	% 1	0	0	<u> </u>	0	+	\$	0	0	+	+1	1	1	$(\Sigma_1)^{T}$
																																	_
1	ı	+	0	ı	+	+	ı	0	+	ı	0	+	ı	ı	+	0	1	+	+	ı	0	+	ı	0	+	i	ı	+	0	ı	+	+	(Kg) (
1 0	1	+ 7	0 +	0	+	+	+	0 0	+	0	O +	+	•	I 0				0	+			+	+	0 0	+	i 0		+ 0	.1	0	+	+	(82)
0 0	; ;	+ 0	0 + +	0 +	+ 1	+ 0	+	0 0 -	+ + +	0 0	0 +	+ 0 +	1 0					0					+		ı		+) () +	1	0	(S ₂) (N ₂)
	; ; +	+ , O	+ +	+	+	+ 0 ÷	+ + 0				O + I + +			0	+	0	8	0 +	+	0	ı	0	! + !	0		0	+	O I	.1		1	0	(S ₂) (N ₂) (L ₂)
0 + 0	+	+ , O I +	O + + I I	+ + 0	+	+ 0 +	0 +	+	+	0 +	+	+ + 0	0 +	0 1	+ + + +	0 0 0 0	8 8	0 + + +	+ 0 +	0 1 1 0	+ + +	0 +	++	0 +	0) + +	+ + 0	0 1 0	+	+	1 +	0	(S ₂) (N ₂) (L ₂) (2N ₂)
0 + 0	+ + 1	+ 7 0 1 + 0	0 + + 1 0	+	+	+ 0 -	0 +	+	+	0 +	+	+ + 0	0 +	0 1	+ + + +	0 0 0 0	8 8	0 + + +	+ 0 +	0 1 1 0	+ + +	0 +	++	0 +	0) + +	+ + 0	0 1 0	+	+	1 +	0	(S ₂) (N ₂) (L ₂)
0 + 0 0				+ + 0	+		0 + +2	+ 0 0	+ ! ! !]	0 + -1	+	+ + 0 +3	- + + - 120	0 1 1 14	+ + + + 5	0 0 0 0 0	-55	0 + + + +4	+ 0 + 1 +20	0 - 0 -3	+	0 0 + - +1	+ + +1	0 + 1 0 0	. S − S − S − S − S − S − S − S − S − S	· + + · · · ·	+ + 0 - 0	0 0 -1		+ + .	+ + + 1	0 0 0	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 +	ı	I ·	+	+ + 0 +1	+ 0	+	0 + +& 0	+ 0 0	+ +	0 - + -1 +	+	+ + 0 +3 0	0 + - 20 +	0 1 1 -4 1	+ + + +5	0 0 0 0 0 +	l l	0 + + + +4	+ 0 + 1 +2 +	0 - 0 -3 0	+ + 0	0 0 + 1 +1 +	+ + + + + + + + + + + + + + + + + + + +	0 + ! 0 0 !	- 02 0	0 + + +	+ + 0 1 0 1	0 0 -1 0		+ +	+ + 1	0 0 0 +	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 + +	0	8	+	+ + 0 +1 0	+ 0 - 0	+	0 + +2 0 0	+ 0 0 +	+ 1 + 0	0 + -1 +	+	+ + 0 +3 0 +	0 + -2 + 0	0 1 1 1 14 1 1	+ + + + +5 - 0	0 0 0 0 0 +	5 - 0	0 + + + +4	+ 0 + - +2 + 0	0 - 0 -3 0 +	+ + 0	0 0 + - +1 +	+ + +1 + 0	0 + 1 0 0 1 +	-2 0 0	0 + + 0 + 1	+ + 0 - 0 - 0	0 0 -1 0 +	1 + + O + O	+ + 1 0 1	+ +1	0 0 + +	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 + +	0 +	1	+ 0	+ + 0 +1 0 + +	+ 0 - 0 0	+	0 + +2 0 0 +	+ 0 0 + 7 0 0	+	0 + 11 + 1	+ 1 0 1 0 1	+ + 0 +3 0 +	0 + - 2 + 0 +	0 4	+ + + + +5 - 0	0 0 0 0 0 + + +	5 - 0	0 + + + +4 -	+ 0 + : +2 + 0 +	0 0 -3 0 + -	+ + 0 - 1	0 0 + - +1 + - +	+ + +1 + 0	0 + 1 0 0 1 + 0	-2 0 +	0 + + 0 + 1	+ + 0 - 0 - 0 0	0 - 1 0 -1 0 + +	1 + + 0 + 0	+ + 1 0 1 1 0	+ + 1 - 0 +	0 0 + + +	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 + + 1) () + +	1 - 0 +	+ 0	+ + 0 +1 0 + + -	+ 0 - 0 0 +	+ 0	0 + +2 0 0 +	+ 0 0 + 0 0	+ 1 -1 + 0 +	0 + -1 + -1	+ 1 0 1 0 1	+ + 0 +3 0 + - +	0 + -2 + 0 + +	0 1 1 1 14 1 1 1	+ + + + +5 - 0 - 0	0 0 0 0 0 + + + +	1 1 15 1 0	0 + + + +4 -	+ 0 + : +2 + 0 + +	0 - 0 - 3 0 + - +	· + · · · · · · · · · · · · · · · · · ·	0 0 + - +1 + - + -	+ + + + + + + + + + + + + + + + + + + +	0 + ! 0 0 ! + 0 0	1 0 1 2 0 0 + 1	0 + + 0 + 1	+ + 0 - 0 - 0 0 +	0 1 0 -1 0 + +	1 + + 0 + 0	+ + 1 0 1 1 1 0 +	+ + + 0 + +	0 - 0 0 + + - 1	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 + + 1 + 1 + + + + + + + + + + +	1 0 + +	1 0 + 0	+ 0 1 +	+ + 0 +1 0 + +	+ 0 - 0 0 + +	+ 0 0	0 + +2 0 0 +	+ 0 0 + + 0 0 +	+ 1 1 11 + 0 11 +	0 + -1 + 1 0	+ 1 0 1 + +	+ + 0 +3 0 + + +	0 - + -2 + 0 + + +	0 4 0	+ + + + + + + + + + + + + + + + + + + +	0 0 0 0 0 + + + + +	1 1 -5 1 0 1	0 + + + +4 0	+ 0 + 1 +2 + 0 + + +	0 - 0 -3 0 + - + -	· + · · · · · · · · · · · · · · · · · ·	0 0 + 1 +1 + 1 + 0	+ + + + 0	0 + 1 0 0 1 + 0 0 +	. 0 . 2 0 0 + .	0 1 + + 0 + 1 0 0	+ + 0 - 0 - 0 0 + +	0 - 0 -1 0 + +	1 + + 0 + 0 + +	+ + 1 0 1 1 0 + 0	1 + +1 1 0 + + I	0 1 0 0 + + + 1 1	(S_2) (N_2) (L_2) $(2N_2)$ (Σ_2)
0 + 0 0 + + 1 + 1 + + + + + + + + + + +	1 0 + +	1 0 + 0	+ 0 1 +	+ + 0 +1 0 + + -	+ 0 - 0 0 + +	+ 0 0	0 + +2 0 0 +	+ 0 0 + + 0 0 +	+ 1 1 11 + 0 11 +	0 + -1 + 1 0	+ 1 0 1 + +	+ + 0 +3 0 + + +	0 - + -2 + 0 + + +	0 4 0	+ + + + + + + + + + + + + + + + + + + +	0 0 0 0 0 + + + + +	1 1 -5 1 0 1	0 + + + +4 0	+ 0 + 1 +2 + 0 + + +	0 - 0 -3 0 + - + -	· + · · · · · · · · · · · · · · · · · ·	0 0 + 1 +1 + 1 + 0	+ + + + 0	0 + 1 0 0 1 + 0 0 +	. 0 . 2 0 0 + .	0 1 + + 0 + 1 0 0	+ + 0 - 0 - 0 0 + +	0 - 0 -1 0 + +	1 + + 0 + 0 + +	+ + 1 0 1 1 0 + 0	1 + +1 1 0 + + I	0 1 0 0 + + + 1 1	(S ₂) (N ₂) (L ₂) (2N ₂)

COMBINAISONS DEFINITIVES

		Tabl	eau III						Tabl	eau IV		
[K ₁]	[o ₁]	[Q ₁]	[M ₁]	[J ₁]	$[\Sigma_1]$		[K ₁]'	[o ₁]'	[Q ₁] '	[M ₁]'	[J ₁] '	$[\Sigma_1]$
29055	-1233	778	-533	1381	29448	2	8181	- 330	1675	2664	989	33179
25	27115	505	1202	-2377	23570	-	241	23744	1564	- 370	5472	3316
2	- 412	28403	-2027	- 194	25772		919	526	27104	-1190	-2919	2444
-1595	1547	-3027	29115	-1789	24251		394	1309	366	27132	-1207	2720
26 85	1347	-1476	2375	29775	34707		3236	- 549	-2238 	-3842 	28831	25338
		Tabl	eau V						Tabl	eau VI		
[m ₂]	[s ₂]	[N ₂]	[L ₂]	[en ₂]	$[\Sigma_2]$		[M ₂]'	[s ₂] '	[N ₂] '	[L ₂] '	[2N ₂] '	[Σ ₂
26381	1236	- 580	1853	-1046	27844	 2	 5305	- 220	- 429	 1721	-2479	2389
- 274	33960	-3167	-6345	- 394	23779		1520	31233	-1382	-1657	-1692	2498
1741	- 390	25907	-2514	1813	27557		995	806	25304	-1760	3054	2839
226	-3568	- 789	26535	670	23175		1425	-2004	-2874	25789	1901	. 2424
575	587	2684	- 317	27504	30733	-	1884	-1280	1492	2411	26287	2702

Nota : Les résultats de ces combinaisons doivent être multipliés par ${\bf 10}^{-7}$.

TABIEAU VII

Principales ondes diurnes de la marée gravimétrique théorique

	V						J		
Symboles	Argument		Argument	t		Vitess	se angulaire	Amplitude	
de Darwin		S	h p	N °	D. 7	<u>T</u> pa	ar heure	H ₁ x 10 ⁵	
			·		1 2	3		- (14일 - 14일) 	
de Darwin 2Q1 σ_1 Q1 ρ_1 MP1 M1 X1 π_1 P1 σ_1 K1 ψ_1 ψ_1 ψ_1 ψ_1 σ_1 J1	number Doodson 7 115855 6 1 117655 9 1 125745 4 6 1 755 4 7 1 125745 2 1 555 2 3 1 135555 3 1 1 645 3 3 1 645 3 3 1 645 3 3 1 645 3 3 1 14556 7 1 144556 7 3 1 145535 7 1 145535 7 1 145545 7 1 14554 6 7 1 14554 6 7 1 14554 7 1 1555 7 1 165545 7 1 165555 7 1 165555 7 1 165555 7 1 165555 7 1 165555 7 1	-4 -4 -3 -3 -3 -3 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	h p 0 2 3 1 0 0 2 2 0 0 0 0 1 1 2 2 1 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 1 2 2 2 1 0 0 0 0 0 1 2 2 2 1 1 0 0 0 0 0 0 1 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N° 0 0 -1 0 -1 0 0 -1 0 0 -1 0 0 0 -1 0 0 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12 12 12 12 12 12 12 12 12 12 12 12 12 1	7,3099115 3827651 8520798 8542862 9249334 9271398 7,3940191 3964545 3986509 4693081 4715145 8701820 9019689 9386228 9408292 9430356 9476774 9523193 9841023 0251729 0273793 4145567 4852039 4874103 4920521 4965940 4989004 5695476 5717540 9178647 9567250 9589314 9999980 0,0000020 0388622 0410686 0432751 0454815 0821353 1232059 5125897 5147961 5854433 5876497 5900852	108 C ₁ 278 180 955 218 1153 211 C' ₁ - 1360 C ₁ 7216 258 1371 113 130 218 7105 30766 37689 108 C' ₁ 243 C ₁ 115 491 107 278 197 1065 661 C' ₁ 2964 C ₁ 594 1029 199 17584 147 423 1050 53050 7182 .154 423 756 566 112 2964 587 241 C' ₁	
so ₁	183555 1 1 185355 2 1 555 4 1 565 4 1 575 4 1	3 - 3 3 (3 (3 (2 0 0 -2 0 0 0 0	0 0 0 1 2	0	Y 16°	,0569644 1298180 1391017 1413081 1435145	492 C ₁ 240 1623 1039 218	
	195 4 55 50 1 465 54 1		$\begin{array}{ccc} 0 & -1 \\ 0 & -1 \end{array}$	0 1	0 -		6834764 68568 <i>2</i> 8	311 199	

Nota : L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

Principales ondes semi-diurnes de la marée gravimétrique théorique

TABLEAU VIII

	\int_{0}^{∞}										
Symboles de	Argument number			Aı	gument				Vites	se angulaire	Amplitude
Darwin	Doodson	\mathcal{T}	s	h	p	N ⁹	p ₁	π	$\frac{\pi}{2}$ p	ar heure	H ₁ x 10 ⁵
	225855	2	-3	0	3	0	0	+	53 27	3509802	130 C ₂
MNS	227655	2	-3	2	. 1	0	0	+	<u> </u>	4238338	335
	235655	2	-2	0	1	0	0		- 57	8907130	117 C ¹ 2
2N ₂	755	2	-2	0	2	0	0	+ .	56	8953548	1150 C ₂
$\mu_{\rm 2}$	237555 5	2	-2	2	0	0	0	+	2 7	9682084	1388
~	(245555	2	-1	0	0	0	0			4350877	427 C
$N_{\mathcal{Z}}$	645	2	-1	0	, 1	-1	0		20	4375231	324 C ₂
.~	655	2	-1	0	1	0	0	+	60	4397295	8693
	247455	2	1	2	-1	0	0	+	61	5125831	1652
	253755	2	0	-2	2	0	0		6 Z	9112506	136
	254556	2	0	-1	0	0	1		63	9430375	157
	255545	2	0	0	O	-1	0		64	9818978	1693
\mathbb{S}^{M}	555 13	2	0	0	0	0	0	+	65	9841042	45406 ⊁
	256554	2	Ð	1	0	0	-1	+	6 6 29	,0251709	138
λ_{2}	263655	2	1	-2	1	0	0		6.2	4556253	335
,	26545516	2	1	0	-1	0	0		68	5284789	1284
т.	555	2	1	0	0	0	0		+ 67	5331208	394 C' ₂
\mathbb{S}^{J}	655	2	. 1	0	1	0	. 0	+	90	5377626	321 C ₂
	665	2	1	0	1	1	0	+	71	5399690	141
$^{\mathtt{T}}$ 2	272556	2	2	-3	0	0	1	+	72	9589333	1240
S ₂	273555 21	2	2	-2	0	0	0	+	J3 30°	,0000000	81143 21179
R ₂	274554	2	2	-1	0	0	-1		74	0410667	177
~	(275555	2	2	0	0	о`	0	+) 2	0821373	5753 -
$\kappa_{\mathcal{Z}}$	565	2	2	0	0	1	0	+	26	0843437	1712
~	575	2	2	0	0	2	0	+	22	0865501	186
NJ_2	285455	2	3	0	-1	0	0	+	78	6265120	321
	465	2	3	0	-1	1	0	+	79	6287184	140

Nota : L'amplitude doit être positive. Si ce n'est pas le cas, on doit la remplacer par sa valeur absolue et ajouter 180° à l'argument.

TABLEAU IX

		•											
ı	Symboles de Darwin	Argument number Doodson	$\left[\kappa_{1}^{-}\right]_{1}$	[o ₁] ₁	$[Q_1]_1$	$[M_1]_1$	$[J_1]_1$	$[K_1]_1$	[o ₁] • 1	$[\mathbf{Q_1}]_{0}$	[M ₁] 1	[J ₁] ₁	
			•										
		115855	0,008	0,002	-0,025	0,038	0,130	-0,067	-0,055	0,089	0,169	-0,156	
		117655		0,039	-0,103	0,005	0,124	-0,037	-0,030	0,027	0,135	-0, <u>1</u> 95	
		(125745		0,002	-0,005	-0,001	0,000	0,033	0,049	-0,036	-0,022	-0,T38	
	$2Q_1$	755	0,001	0,002	-0,006	-0,001	0,000	0,033	0,049	-0,036	-0,022	-0,138	
		(127545		-0,060	0,148	0,034	-0,003	0,001	0,004	0,091	0,004	-0,084	
	σ_1	555		-0,060	0,148	0,034	-0,003	0,001	0,004	0,091	0,004	-0,084	
		ູ້ 1 <i>3</i> 5555		-0,007	1,001	0,003	0,000	-0,003	-0,007	0,999 1,000	0,003	0,002 0,001	
	Q_1	₹ 645		-0,004	1,000	0,001	0,000 0,0000	-0,001 0,0000	-0,004 0,0000	1,000	0,000	0,000	
		655	0,0000	0,0000	1,0000	0,0000 -0,062	-0,000	0,050	0,0000	0,985	-0,062	-0,038	
	$ ho_1$	137445	0,038	0,140	0,967	-0,064	-0,014	0,052	0,131	0,9842		-0,039	
		455 143755	0,039 0,055	$0,144 \\ 0,964$	0,9352	-0,110		0,076	0,980	0,157		-0,055	
		144556	0,032	0,986	0,076	-0,066	-0,016	0,045	0,979	0,083	-0,070	-0,012	
		(145535	0,003	0,999	0,007	-0,007	-0,002	0,005	0,999	0,008	-0,008	-0,003	
		545	0,002	1,000	0,004	-0,003	-0,001	0,003	1,000	0,004	-0,004	-0,002	
	01	₹ 555	0,0000	1,0000	0,0000			0,0000	1,0000	0,0000	0,0000		
	1	655	-0,004	1,000	-0,008	0,008	0,002	-0,005	1,001	-0,009	0,009	0,004	
		755	-0,006	1,001	-0,013	0,012	0,003	-0,008	1,001	-0,013	0,013 0,084	0,006 0,033	
	,	146554	-0,036	0,994	-0,066	0,076	0,017	-0,046 -0,096	0,997 0,972	-0,072 -0,132	0,004	0,069	
	MP ₁	147555	-0,073	0,970	-0,122	0,166 0,170	0,035 0,036	-0,099	0,972	-0,135	0,170	0,071	
	1	l 565 153655	-0,07 <u>5</u>	0,969 0,165	-0,124 -0,068	0,170	0,052	-0,148	0,159		- 0,981	0,087	
		155445	-0,117 -0,012	0,013	-0,006	1,000	0,006	-0,015	0,013	-0,006	1,002	0,009 -	-
		455	-0,008	0,009	-0,004	1,000	0,004	-0,010	0,009	-0,004	1,001	0,006	
	M_1	555	0,0000	0,0000		#1,0000		0,0000	0,0000	0,0000	1,0000		
	1	655		-0,008	0,004	1,000	-0,003	0,010	-0,007	0,004	0,999	-Q,005	
		665	0,012	-0,012	0,006	1,000	-0,005	0,015	-0,011	0,006	0,998	-0,008	
	χ.	∫ 157455		-0,126	0,058	0,967	-0,063	0,190	-0,117	0,061	0,952	-0,099	
	X ₁	l 465		-0,129	0,059	0,965	-0,065	0,196	-0,119	0,063	0,950	-0,101 -0,213	
	π_1	162556	0,9208		0,064	0,260	-0,157	1,004	-0,102 -0,069	0,062 0,042	0,234 0,151	-0,210	
	P ₁	163545 555	0,963 0,9652	-0,087	0,044 0,043	0,170 0,165	-0,120 -0,118		-0,067		0,146	-0,157	
		(164554		-0,000	0,021		0,065	1,013	-0,034	0,020		-0,083	
	\mathfrak{s}_1	556		-0,042 -0,042	0,021	0.080	0,065		0,034	0,020	OND .	0,083	
	*	165545	1,0000		0,001		-0,004		-0,002	0,001	0,004	-0,004	
	**	555	1,0000	0,0000		0,0000	0,0000	1,0000		0,0000			
	κ_1	565	1,0000	0,002	-0,001	-0,004	0,004	0,9980		-0,001	-0,003	0,005	
		575	1,000	0,005	-0,002	-0,008	0,008	0,997	0,004	-0,002	-0,007	0,010	
	ψ_1	166554	0,989	0,039	-0,020	-0,066	0,077	0,968	0,029	-0,018	-0,055	0,097	
	$arphi_1$	167555	0,960	0,074	-0,037	-0,119	0,164	0,918	0,053 0,024	-0.034	-0,099 -0,039	0,203 1,003	
	$ heta_1$	173655	0,143	0,055	-0,023 -0,022	-0,057	0,968 0,969	0,101 0,0 <u>9</u> 7		-0,017 -0,016	-0,039	1,003	
	1	€ 665	0,137_	0,053		-0,055 0,0000		0,0000					
	т	175455 465	0,0000 -0,004	-0,002	0,000	0,001	1,000	-0,000	0,000	0,000	0,000	0,999	
	$^{\rm J}{}_{1}$	555 555		-0,002	0,002	0,001	1,000	=0,008	-0,002	0,001	0,002	0,997	
	SO ₁	183555		-0,128	0,003	-0,060	0,119	0,047	0,072	-0,040	-0,044	0,108	
	501	€ 185355		-0,103	-0,006	-0,100	-0,024	0,066	0,093	-0,054	-0,061	0,000	
	00	555	0,071	-0,097	-0,008	-0,109	-0,050	0,070	0,098	-0,057	-0,065	-0,017	
	001	565	0,072	-0,097	-0,008	-0,109	-0,051	0,070	0,098	-0,057	-0,065	-0,018	
		575		-0,097	-0,008	-0,109	-0,052	0,070	0,098	-0,057	-0,065	-0,019	
		195455		-0,009	0,128	0,052	0,062	-0,051	0,015	-0,050	-0,022	-0,051	
		465	~0,060	-0,009	0,128	0,052	0,062	-0,051	0,015	-0,050	-0,022	-0,051	

8

TABLEAU X

Symboles de Darwin		Argument number Doodson	$[M_2]_1$	$[s_2]_1$	$[N_2]_1$	[L ₂] ₁	$[2N_2]_1$	[M2] 1	[s ₂] '1	[N2] 1	[L2] 1	[2n ₂] 1
									ło-			
		225855	-0,082	0,001	-0,048	0,074	0,067	0,025	-0,054	0,045	0,052	0,011
$\mathtt{MNS}_{\mathbf{Z}}$		227655	-0,064	0,041	-0,131	0,057	0,240	0,048	-0,034	0,010	0,040	0,148
OM	8	235655	0,001	0,003	-0,008	-0,001	1,001	0,003	0,002	-0,006	-0,002	1,000
en _e	1	755	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	1,0000
μ_2		237555	-0,028	-0,047	0,171	0,017	0,9401	-0,064	-0,033	0,127	0,030	0,9756
	(245555	-0,006	-0,004	1,001	0,003	0,008	-0,009	-0,004	0,999	0,004	0,008
$^{\mathrm{N}}$ 2	4	645	-0,002	-0,002	1,001	0,001	0,003	-0,003	-0,002	1,000	0,002	0,004
	L	655	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000
$^{\cdot} u_{2}$		247455	0,115	0,061	0,9518	-0,048	-0,088	0,153	0,059	0,9801	-0,068	-0,114
~		253755 ,	0,941	0,078	0,131	-0,099	-0,045	0,981	0,084	0,151	-0,123	-0,064
		254556	0,974	0,046	0,070	-0,061	-0,025	0,997	0,050	0,081	-0,075	-0,036
34	1	255545	0,999	0,002	0,002	-0,002	-0,001	1,000	0,002	0,003	-0,004	-0,001
M_{2}	1	555	1,0000	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000
		256554	1,007	-0,049	-0,059	0,073	0,022	0,984	-0,053	-0,069	0,087	0,032
λ_2		263655	0,170	-0,136	-0,050	0,9703	0,020	0,128	-0,149	-0,060	0,9960	0,033
~	6	265455	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000
т		555	-0,012	0,010	0,002	1,000	-0,002	-0,008	0,009	0,004	0,998	-0,002
$^{\mathrm{L}}$ 2	1.	655	-0,022	0,021	0,005	0,999	-0,003	-0,014	0,022	0,007	0,996	-0,004
		665	-0,026	0,026	0,006	0,998	-0,003	-0,018	0,027	0,009	0,995	-0,005
$^{\mathtt{T}}_{\mathtt{Z}}$	٠	272556	-0,057	0,9735	0,018	0,107	-0,006	-0,027	0,9858	0,019	0,092	-0,010
5 ₂		273555	0,0000	1,0000	0,0000	0,0000	0,0000	0,0000	1,0000	0,0000	0,0000	0,0000
R ₂		274554	0,058			-0,097	0,006	0,026	0,9917	•	-0,079	0,009
۵	a	275555	0,113	0,9905		-0,180	0,010	0,041	0,9613	•	-0,144	0,017
K ₂		565	0,115		-0,036	-0,184	0,010	0,042	0,959	-0,036	-0,147	0,017
۵	1	575	0,118	0,988	-0,037	-0,187	0,010	0,042	0,957	-0,038	-0,150	0,019
KJ ₂	ľ	285455	0,041	-0,140	-0,048	0,067	-0,019	-0,183	-0,183	0,015	0,100	0,120
4		465	0,041	-0,140	-0,048	0,057	-0,019	-0,183	-0,183	0,015	0,109	0,120
			0,011	0,110	0,010	0,007	0,010	0,100	0,100	0,010	0,100	0,120

Strasbourg - Marée gravimétrique observée - Unité : microgal

TABLEAU XI

Avril 1956	0	1	2	3	4	5	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1er										549	529	502	475	449	429	419	419	429	448	471	491	510	524	533
2	539	544	547	549	552	557	559	559	558						454									
3	522	530	534	536	535	534	531	529	526	521	513	501	487	469	451	431	412	396	394	398	414	430	449	469
4	485	498	506	509	507	502	494	487	484	481	478	474	471	465	454	439	422	404	391	387	389	398	426	449
5															459							-		
6 .															501									
7	491	519	545	562	567	561	544	525	507	497	495	503	523	542	562	571	573	567	548	528	511	501	502	514
8	537	565	591	610	616	609	591	567	538	519	510	514	533	558	587	609	618	617	602	583	561	539	534	538
9	557	582	609	630	643	640	620	589	558	527	506	502	517	543	576	606	630	643	641	621	597	573	559	555
10	564	583	609	633	649	650	628	594	555	519	4 88	472	4 78	501	535	572	605	625	630	625	607	583	563	549
11	549	563	586	609	622	624	613	583	542	499	461	430	426	444	475	514	556	590	607	609	599	581	559	544
12	538	544	559	580	597	603	597	573	533	486	440	393	381	381	394	439	483	522	<u>553</u>	571	571	560	547	531
13	520	519	527	546	560	568	567	554	521	477	431	379	345	335	340	373	409	449	483	515	525	525	518	505
14	492	485	486	496	507	518	521	511	485	449	404	351	316	296	289	298	320	351	389	430	456	468	471	465
15	456	45 0	449	455	465	473	478	477	462	<u>439</u>	416	361	325	295	275	270	280	305	336	369	403	427	441	444
16	443	441	439	439	440	442	445	446	444	435	414	375	342	314	290	273	268	276	296	325	352	377	401	415
17	422	424	423	421	419	419	421	423	424	423	419	409	394	373	354	336	327	326	335	354	382	412	443	470
18	<u>488</u>	500	503	498	492	485	480	478	478	4 80	482	4 80	475	468	454	436	419	406	399	401	415	439	46 8	495
. 19	518	535	543	542	533	519	506	496	492	494	500	508	519	525	523	510	495	479	<u>464</u>	4 58	458	470	494	520
20	546	569	584	585	576	558	539	520	506	503	507	522	539	555	565	<u>567</u>	559	541	522	504	493	492	503	528
21	553	576	590	595	587	569	541	513	490	478	476	4 88	507	533	554	570	575	565	547	527	507	496	498	511
22	532	555	575	584	577	557	527	490	455	<u>428</u>	420	426	451	478	507	537	554	558	552	534	511	494	491	495
23															492									
24															452									
25	<u>515</u>	530	545	560	568	567	549	517	475	432	394	372	369	384	413	454	494	528	549	559	554	542	527	514
26															373									
27															339									
28															331									
29															333									
30					484	488	<u>492</u>	490	481	465	442	415	392	373	360	359	369	386	408	434	459	478	492	499
1 Mai	501	500	498	497																				

TABLEAU XII

1	2	3	4	5		6	7	8	9
Date	Heure			Série				Série	
Avril 1956	T.U.	+	-	diurne		+		1/2 diurne	Somme
. 2	6	7896	8303	- 407		8258	7931	337	16199
3	3	8132	7560	572		7709	7983	- 274	15692
4	0	7942	695 8	984		7509	7391	118	14900
4	21	7565	6970	595		7424	7111	313	14535
5	18	7104	7270	- 133		6897	7477	- 580	14374
6	15	7491	7860	- 369		7681	7570	11	15351
7	12	8352	8589	- 237		8880	8061	819	16941
8	9	8955	9086	- 131		8782	9259	- 477	18041
9	6	9109	9430	- 321		8870	9569	- 799	18539
10	3	9002	9528	- 523		9774	8756	1018	18530
11	0	8939	9057	- 118		9179	8817	362	17996
11	21	9025	8192	833		7988	9229	-1241	17217
12	18	8806	7419	1387		8259	7966	293	16225
13	15	7896	7268	528		8065	7099	966	15164
14	12	6462	7322	- 860		6514	7270	- 753	13784
15	9	5629	7233	-1304		6308	6 554	- 246	12852
16	5	5737	6629	- 892		6515	5851	564	12546
17	3	5371	5989	382 -		5991	6369	- 378**	12360
18	0	7461	34 15	1045		5907	6970	- 63	13877
18	21	7987	7311	575		7915	7383	532	15298
19	18	8270	8155	115		7911	8514	- 503	15425
20	15	8496	9 580	- 84		8453	8520	- 164	17076
21	12	8523	8478	45		3978	8023	955	17001
22	9	8091	8335	- 274		7993	8463	- 470	16456
23	6	7764	8503	- 742		7718	8552	- 834	16270
24	3	7664	8324	- 950		351 8	7670	948	16288
25	0	7960	8120	- 130		8211	7869	342	15080
25	21	8331	7357	964		7312	8 <i>3</i> 85	-1074	15698
25	18	8264	3833	1401		7659	7468	191	15127
27	15	7597	5942	355		7578	3831	817	14539
28	12	6861	7381	- 520		5872	7370	- 498	14242
29	9	63 98	7745	-1347		6878	7235	- 387	14143
30	6	6632	7534	- 932		7353	3833	530	14193
				l	I			[1

TABLEAU XIII

Principales ondes diurnes de la marée gravimétrique théorique à Strasbourg - heure origine : 16 avril 1956, 6^h T.U.

Argument number	ϕ_1	$\cos\phi_1$	- $\sin\phi_1$	H ₁	A ₁	B ₁
Doodson	degrés	×105	×105	10-9gal	10 ⁻⁹ gal	10-9gal
				X		
115855	57,125	54281	-83986	88	4 8	- 74 -
117655	256,311	-23665	97159	227	-54	221 - ,
125745	296,683	44905	89350	147	66 .	131 - 9
755	46,219	59 190	-72199	780	540	-563
127545	135,869	-71775 ⁶	-69630	178	-128	-124 - - 8 56 ⋅
555	245,405	-41520	90927	941 (326)	-392 \305\	11110
135555	20,546 285,777	93639 27189	-35096 96233	1110	302	7 1058
645 655	35,313	81601	-57804	5890	4806	-3405 -
137445	124,963	-57305	-81952	211	-121	-173
455	234,499	-58073	81410	1120	-650	912 -
143755	5,220	99585	-09098	92	92	J - 8 -
144556	102,235	-21192	-97729	106	- 22	-104
145535	345,335	96742	25317	178	-172	→ 45 14
545	274,871	08491	99639	5800	492	5779 45
555	24,406	92064	-41320	30766	28017	-12713
655	219,173	-77525	63165	111	- 86	70
755	53,939	58865	-80839	199	117	-161
146554	126,577	-59590	-80306	94	- 56	- 75
147555	253, 125	-29028	95694	401	-116	384
565	182,661	-99892	04643	87	- 87	4
153655	354,314	99508	09908	227	226	22 j. 7/ -160
155445 455	83,954 193,500	10515 - 97237	-99446 23344	161 869	17 -845	203
555	208,266	-88076	47357	582	-601	323
655	43,033	73097	-68241	2420	1769	- 1651
565	152,568	-88756	-46070	485	-430	223
157455	242,219	-46609	88473	462	-215	409
465	351,754	98966	14342	101	100	14
162556	61,237	48119	-87662	840	404	-736
163545	233,872	-58959	80770	162	- 96	131
555	163,407	-95836	-28557	14353	-13755	-4099
164554	85,578	07710	-99702	120	9歳	-120
556	289,955	34128	93995	345	118	324
165545	102,591	-21799	-97595 57170	857	-187	-836 97090
555 585	32,125	846 8 8	-53178 -62030	43305 5862	36674 -4598	-23029 -3636
565 575	141,652 71,197	-78436 32231	-94663	126	41 -	-119
166554	134,297	-69838	-71573	345	-241	-247
167555	80,845	15911	-98726	617	98	-609
173655	182,034	-99937	03549	462	- 4 52 ₄	16
665	291,559	36762	92998	91	-91	85 🖟 🕢
175455	21,220	93220	-36195	2420	2420	-876
465	130,755	-65283	-75751	479	479	-363
555	35,985	80916	-58759	249	2 <u>4</u> 9	-145
183555	171,1Ź7	-98903	-15425	402	402	- 52
185355	10,313	98384	-17903	196	196	- 35
555 565	219,845	-75777	64073	1325	1 32 5	849 426 4 1
565 585	329,382	85058 10007	50178	848	848	
575 195455	78,917 208,940	19223	-98135	178 254	178 254	-175
195455 465	318,475	-87513 74857	48389 66295	254 162	1 8 2	123 107 5
100	, -, -		- 3.000	1 3~	1000	-0,

MAREE GRAVIMETRIQUE OBSERVEE BRUTE

Tableau XV

Tableau XVI

PRESSION ATMOSPHERIQUE Unité: 10⁻⁴mm/de/mercure

Tableau XVII

i	$ \begin{bmatrix} \ \ \ \ \end{bmatrix} \begin{bmatrix} \ \ \ \ \end{bmatrix}' \qquad \qquad \begin{bmatrix} \ \ \ \ \end{bmatrix} \begin{bmatrix} \ \ \ \end{bmatrix}' $	Tableau XVIII Marée gravimétrique observée corrigée de l'effet de pression atmosphérique Unité : 10-9gal	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
•.		que	Unité: []' -38719 - 7033 - 1529 - 2232 - 1972
Tableau XX	را س ا ا ا ا ا ا ا ا ا ا ا ا ا		Unité: 10^{-9} gal []' -38719 M_2 -20584 35078 - 7033 S_2 18634 -6566 - 1529 N_2 - 2913 6053 - 2232 L_2 452 288 - 1972 $2N_2$ - 582 179 -51485 \sum_2 - 5263 35033
	$ \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_1 & \begin{bmatrix} 1 \end{bmatrix}_1 & \begin{bmatrix} 1 \\ 1 \end{bmatrix}_1 & \begin{bmatrix} 1 \\ 1 \end{bmatrix}_1 \\ 18831 & -32783 & M_2 & -17145 & 28189 \\ 29621 & -6352 & S_2 & 15426 & -6389 \\ 4057 & 1904 & N_2 & -2558 & 5275 \\ -2095 & -1784 & L_2 & 17 & 332 \\ 3240 & -799 & 2N_2 & -386 & -2 \\ \end{bmatrix} $	'Marée gravimétrique théorique Unité : 10 ⁻⁹ gal	$\begin{bmatrix} \ \ \ \ \end{bmatrix} \begin{bmatrix} \ \ \ \ \end{bmatrix}' \begin{bmatrix} \ \ \ \ \end{bmatrix} \begin{bmatrix} \ \ \ \ \end{bmatrix}'$ $K_1 4298 -759 M_2 454 -188$ $0_1 -1289 1595 S_2 -238 2510$ $0_1 505 254 N_2 -171 -298$ $M_1 31 -82 L_2 -97 -27$ $J_1 18 212 2N_2 -82 -134$

P1 P1

45233 35945

58,299 37807 11,755 30294

 ϕ_1° H/H₁ $\phi^{\circ} - \phi_1^{\circ}$ 7 30,123 1,193 -1,827 4 12,103 1,219 -0,347 2 25,141 1,106 -5,216

 $\dot{\phi}$ $^{\circ}$ $^{\mathrm{H}_{1}}$

Rapports d'amplitude et déphasages

4958

18,925

4482

40931

239,140

32977 238,673 1,241

20109

21,515

245,042

5863 244,134 1,156

23,442 1,196

0,467 -1,927 0,908

Errata au Nº 9.

Par suite d'un accident au tirage, certaines notations manquent dans le B.I.M. n° 9:

- p. 139 ligne 14 du haut lire $\sin^3 p$ (p = lunar parallax)
- p. 140 ligne 10 du haut lire phase lag $\triangle T$ ligne 11 du haut lire $\frac{12}{\triangle T}$ = 250 or $\triangle T$ = $\frac{1}{20}$ hour

Documents reçus aux Centres Internationaux

Japon

Station CHIBA

Tableaux I, II, IV de août 1957 (Gravimètre Askania GS 11)

Station MATSUSHIRO

Tableaux I, II, IV de août 1957 (Gravimètre Askania GS 11)

TABLE DES MATIERES

Nº 1 1er décembre 195	<u>56</u>	
G.P. WOOLLARD	Data on La Coste and Romberg Tidal Gravity Meters	pp. 2 - 3
R. LECOLAZET	L'enregistrement de la marée gravimétrique avec un gravimètre North-American	4 à 9
Notes Bibliographie	5 figures illustrant l'article de R. Lecolazet.	10 à 12
N° 2 20 janvier 1957		
A. GOUGENHEIM	Au sujet de la dérive des gravimètres.	14 - 15
L. LA COSTE	Data on La Coste and Romberg Tidal Gravity meter.	15
Station BERCHTESGADEN	(Rép. Féd. Allemagne)	16
Station BIDSTON	(Angleterre)	17
Station COLUMBUS	(Ohio, U.S.A.)	18
Station EL VOLCAN	(Chili)	19
Station KRASNAYA PAKHR	A (U.R.S.S.)	20
Station MEXICO	(Mexique)	21
Station PARIS	(France)	22
Station POULKOVÓ	(U.R.S.S.)	23
Station STRASBOURG	(France)	24
Station TEHERAN	(Iran)	25
Notes Bibliographie	•	26 27

N° 3 15 février 1957 29 Theoretical Values of the Bodily H. JEFFREYS Tide Numbers W. BUCHHEIM & Protokoll über die Sitzung betr. 30 à 34 R. TOMASCHEK Erdgezeitenarbeiten in Rahmen des AGI in Mitteleuropa am 1.12.1956 in Freiberg. H. ODISHAW Information about Hawaî Station 34 35 P.J. MELCHIOR Réunion du groupe de travail européen pour l'étude des marées terrestres. 36 à 43 (Japon) Stations JAPONAISES Station BERGGIESSHUBEL (Rép. Dém. Allemagne) 44 (Vénézuéla) 45 Station CAGIGAL 46 Station POTSDAM (Rép. Dém. Allemagne) Station AUSTIN (U.S.A.) 47 (Pologne) 48 Station POZNAN (Italie) 49 Station TRIESTE 50 Bibliographie 51 à 55 L'organisation de stations de H. ELLENBERGER marées terrestres pour les mesures durant l'A.G.I. M. KNEISSL Extrait d'une lettre au Dr. Melchior 55 56 à 60 P. MELCHIOR Discussion du procédé de Corkan pour la séparation des effets directs et indirects. N° 4 20 mars 1957 62 à 65 C. LEFEVRE Programme d'enregistrement de la marée gravimétrique au laboratoire de Géophysique Appliquée de la Sorbonne.

G. JOBERT	Influence de la structure de la croûte sur les déformations causées par les marées océaniques.		66
Station BARI	(Italie)		67
Bibliographie			
1 figure illustrant l'	article de C. Lefèvre		6333
N° 5 24 avril 1957			
B.P. PERTZEV	On the calculation of the drift curve in observations of bodily tides.	71	- 72
X	Western Pacific Regional Conference	73	à 75
Station BREZOVE HORY	(Tchécoslovaquie)		76
Station TIHANY	(Hongrie)		77
Station WINSFORD	(Angleterre)		78
Bibliographie			79
J. PICHA	Ergebnisse der Gezeitenbeobachtungen der festen Erdkruste in Brezové Hory in den Jahren 1936 - 1939.	80	à 84
N° 6 10 juin 1957			
G.W. LENNON	The use of the Milne-Shaw Seismograph for the observation of Earth Tides	86	à 91
Station HOHER LIST	(Rép. Féd. Allemagne)		92
Station NEUNKIRCHEN	(Rép. Féd. Allemagne)		93
Station TIEFENORT	(Rép. Dém. Allemagne)		94
L.B. SLICHTER	Earth Tide Program with La Coste- Romberg Gravimeter.		95
H. BENIOFF	List of extensometer stations		96
Bibliographie		97	à 99
	'article de G.W. Lennon r l'envoi des données aux Centres Mondiaux		000 000

N° 7 1er août 1957						
B. PERTZEV N. PARISKI & M. KRAMER	Comparison of different methods of Harmonic analysis of Bodily Tides	101 à 103				
R.L.G. GILBERT	Canadian Stations for Earth-Tide Studies.	104				
Colloque International	105					
Centres Mondiaux de do	105					
N° 8 5 octobre 1957						
P.J. MELCHIOR	Rapport sur les Marées Terrestres présenté à la XI Assemblée Générale de l'U.G.G.I Toronto 1957.	107 à 137				
N° 9 15 décembre 1957	•					
L.B. SLICHTER	On a favourable period of observations in 1958 for the determination of a phase lag in Earth Tides (une figure)	139 à 142				
T. OKUDA	Japanese Report of Working Group XIII - Gravimetry	143 à 145				
Station VEDRIN	(Belgique)	146				
Station WARMIFONTAINE	(Belgique)	147				
Station BATTICE	(Belgique)	148				
Station MARTELANGE	(Belgique)	149				
Liste des stations fra	150					
Station en Inde		1 50				
Documents reçus aux Ce Bibliographie	1 50 1 51					
N° 110 (1er février 1958)						
R. LECOLAZET	La méthode utilisée à Strasbourg pour l'analyse harmonique de la marée gravimétrique (instructions pratiques)	153 à				
Errata	(THE OTHE PROOFIES)					

INDEX ALPHABETIQUES DES AUTEURS

		n°	pages
H. BENIOFF		6	96
W. BUCHHEIM	-	3	30 à 34
H. ELLENBERGER		3	51 à 55
R.L.G. GILBERT		7	1 04
A. GOUGENHEIM	=	2	14 - 15
H. JEFFREYS		3	29
G. JOBERT	=	4	66
M. KRAMER	and	7	101 à 103
M. KNEISSL	=	3	55
L. LA COSTE	·	2	15
R. LECOLAZET	Cass	1 10	4 à 9 153 à 186
C. LEFEVRE	cus	4	62 à 65
G.W. LENNON	ma	6	86 à 91
P.J. MELCHIOR		3	35 56 à 60 107 à 137
H. ODISHAW		3	34
T. OKUDA	5	9	143 à 145
N. PARISKI	cola	7	101 à 103
B.P. PERTZEV	œ	5	71 à 72
J. PICHA	cca.	5	80
L.B. SLICHTER	650	9	139 à 142
R. TOMASCHEK	em-	4	30 à 34
G.P. WOOLLARD		1	2 à 3

INDEX ALPHABETIQUE DES STATIONS

	n°	pp	*		n°	pp
ABUYAMA	3	41		KOCHI	3	38
ASO-HONDO	3	37		KRASNAYA PAKHRA	2	20
ASO-KENKYUSCHO	3	36		MAKIMINE	3	37
ASO-MIYAZI	3	36	-	MARTELANGE	9	149
ASO-SENRIGAHAMA	3	36		MEXICO	2	21
AUSTIN	3	47		NEUNKIRCHEN	5	93
BARI	4	67		OGOYA	3	42
BATTICE	9	148		OSAKAYAMA	3	41
BEPPU	3	37		OSARIZAWA	3	43
BERCHTESGADEN	2	16		PARIS	2	22
BERGGIESSHUBEL	3	44		POTSDAM	3	46
BESSI	3	38		POULKOVO	2	4823
BIDSTON	2	17		POZNAN	3	48
BREZOVE HORY	5	76		STRASBOURG	ž	24
CAGIGAL	3	45		SU SAMI	3	39
COLUMBUS	2	18		TAMAMIZU	3	40
EL VOLCAN	2	19		TEHERAN	2	25
HOHER LIST	6,	92		TIEFENORT	5	94
HOSOKURA	3	43		TIHANY	5	77
IDE	3	40		TRIESTE	3	49
IIMORI	3	40		TSUCHIKURA	3	42
IKUNO	3	38		VEDRIN	9	146
KAMIOKA	· 3	42		WARMIFONTAINE	9	147
KAMIGAMO	3	41		WINSFORD	5	78
KISHYU	3	39		YURA	3	39