Uncertainty analysis of gravity time series reduction

M. Mikolaj¹, M. Reich¹, and A. Güntner^{1,2}

 $^1{\rm GFZ}$ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany $^2{\rm University}$ of Potsdam, Institute of Earth and Environmental Science, Potsdam, Germany

Motivation

Increasing demand to resolve small-scale signal in emerging fields

- Monitoring of geothermal fields and volcanoes,
- Kilogram definition, co-seismic changes,
- Measurement of water balance components, etc.

Is it really feasible to resolve such subtle gravity effects?

- Time series need to be reduced to the signal of interest
- Different working groups "prefer" different reduction models

Motivation

Increasing demand to resolve small-scale signal in emerging fields

- Monitoring of geothermal fields and volcanoes,
- Kilogram definition, co-seismic changes,
- Measurement of water balance components, etc.

Is it really feasible to resolve such subtle gravity effects?

- Time series need to be reduced to the signal of interest
- Different working groups "prefer" different reduction models

$$g_{residual} = g_{obs} - \delta g_{pol} - \delta g_{tide} - \delta g_{atmo} - \delta g_{ghe} - \delta g_{ntol} \left(- \delta g_{instr.} \right)$$

Motivation

Increasing demand to resolve small-scale signal in emerging fields

- Monitoring of geothermal fields and volcanoes,
- Kilogram definition, co-seismic changes,
- Measurement of water balance components, etc.

Is it really feasible to resolve such subtle gravity effects?

- Time series need to be reduced to the signal of interest
- Different working groups "prefer" different reduction models

$$g_{residual} = g_{obs} - \delta g_{pol} - \delta g_{tide} - \delta g_{atmo} - \delta g_{ghe} - \delta g_{ntol} \left(- \delta g_{instr.}
ight)$$

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage, resolution and continuous operation
- Available for your site (spatial coverage)

Implications of the above criteria for worldwide use:

- Atmosphere: EOST-Operation, EOST-Interim, mGlobe, (Atmacs)
- Global hydrology: CLM, NOAH, MOS, VIC, ERA, MERRA, NCEP
- Non-tidal ocean loading: ECCO, OMCT, TUGOm
- Tides: Baytap08, ETERNA34, VAV06

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage, resolution and continuous operation
- Available for your site (spatial coverage)
- Implications of the above criteria for worldwide use:
 - Atmosphere: EOST-Operation, EOST-Interim, mGlobe, (Atmacs)
 - Global hydrology: CLM, NOAH, MOS, VIC, ERA, MERRA, NCEP
 - Non-tidal ocean loading: ECCO, OMCT, TUGOm
 - Tides: Baytap08, ETERNA34, VAV06

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage, resolution and continuous operation
- Available for your site (spatial coverage)
- Implications of the above criteria for worldwide use:
 - Atmosphere: EOST-Operation, EOST-Interim, mGlobe, (Atmacs)
 - Global hydrology: CLM, NOAH, MOS, VIC, ERA, MERRA, NCEP
 - Non-tidal ocean loading: ECCO, OMCT, TUGOm
 - Tides: Baytap08, ETERNA34, VAV06

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage, resolution and continuous operation
- Available for your site (spatial coverage)

Implications of the above criteria for worldwide use:

- Atmosphere: EOST-Operation, EOST-Interim, mGlobe, (Atmacs)
- Global hydrology: CLM, NOAH, MOS, VIC, ERA, MERRA, NCEP
- Non-tidal ocean loading: ECCO, OMCT, TUGOm
- Tides: Baytap08, ETERNA34, VAV06

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage, resolution and continuous operation
- Available for your site (spatial coverage)

Implications of the above criteria for worldwide use:

- Atmosphere: EOST-Operation, EOST-Interim, mGlobe, (Atmacs)
- Global hydrology: CLM, NOAH, MOS, VIC, ERA, MERRA, NCEP
- Non-tidal ocean loading: ECCO, OMCT, TUGOm
- Tides: Baytap08, ETERNA34, VAV06

What model would you choose?

Selection criteria:

- Cited/recognized approach or model
- Sufficient temporal coverage and resolution
- Available for your site (spatial coverage)

Residuals when resulting from different reduction models (CA)

- Atmosphere: EOST-Operation, EOST-Interim-mGlobe (Atmacs)
- Global hydrology: CLM-NOAH, MOS, VIC, ERA, MERRA, NCEP
- Non-tidal ocean loading: ECCO-OMCT, TUGOm
- Tides: Baytap08–ETERNA34, VAV06

Aim of this study:

Assess uncertainty of residual small-scale signal at different frequencies

Approach:

- Take into account all available models (meeting presented criteria)
- Treat each model as independent and with same weight
- Look at different frequencies of interest, e.g.:
 - hourly differences: precipitation events
 - hours to weeks: volcanic activities
 - weeks to decades: local subsidence phenomena
 - long-term trend: tectonics

Aim of this study:

Assess uncertainty of residual small-scale signal at different frequencies

Approach:

- Take into account all available models (meeting presented criteria)
- Treat each model as independent and with same weight
- Look at different frequencies of interest, e.g.:
 - hourly differences: precipitation events
 - hours to weeks: volcanic activities
 - weeks to decades: local subsidence phenomena
 - long-term trend: tectonics

Aim of this study:

Assess uncertainty of residual small-scale signal at different frequencies

Approach:

- Take into account all available models (meeting presented criteria)
- Treat each model as independent and with same weight
- Look at different frequencies of interest, e.g.:
 - hourly differences: precipitation events
 - hours to weeks: volcanic activities
 - weeks to decades: local subsidence phenomena
 - long-term trend: tectonics

Aim of this study:

Asses uncertainty of residual small-scale signal at different frequencies

Approach:

- Take into account all available models (fulfilling presented criteria)
- Treat each model as independent and with same weight
- Look at different frequencies of interest
- Apply at various sites

Methods/Workflow

Results

Differential mode: RMSE for each site & each component

- 8 -

Differential mode: RMSE for all sites

Mean RMSE for all sites and components (=COMBINE)

- Uncertainty at 1 hour $\approx 0.7 \, \mathrm{nm/s}$
- Uncertainty at 4 hours to 1 week $\approx 2 \,\mathrm{nm/s}^2$
- Maximum RMSE at 6 months > 6.5 nm/s

TIDE ATMO NTOL GHE COMBINE --x--6 RMSE (nm/s²) 5 4 3 2 1 month 6 m 1 year 1 hour 3 h 12 h 24 h 48 h 1 week

Always at half of dominant frequency

axis in log scale

Differential mode: RMSE for all sites

Mean RMSE for all sites and components (=COMBINE)

- Uncertainty at 1 hour $\approx 0.7 \, \mathrm{nm/s}^2$
- Uncertainty at 4 hours to 1 week $\approx 2 \,\mathrm{nm/s}^2$
- Maximum RMSE at $6 \text{ months} > 6.5 \text{ nm/s}^2$

■ Always at half of dominant frequency

Non-differential mode: RMSE & trend effect

• Average RMSE for all sites: $5.1\,\mathrm{nm\,s^{-2}}$

Boxplot with each sites:

- median in orange, average in green (dashed)
- box at 1st and 3rd quartile, whiskers showing range

Results

Non-differential mode: RMSE & trend effect

- Average RMSE for all sites: $5.1\,\mathrm{nm\,s}^{-2}$
- Boxplot with each sites:
 - median in orange, average in green (dashed)
 - box at 1st and 3rd quartile, whiskers showing range

Conclusions

- Effect of individual components:
 - Global hydrology (GHE) has the largest impact (at longer periods)
 - Atmosphere & NTOL important across all frequencies (3x<GHE)</p>
 - Minor influence of tide programs
 - Site dependent
- Combined contribution:
 - No systematic effect on linear trend
 - Significant effect $(>2\,\mathrm{nm\,s^{-2}})$ on 4-hourly to yearly gravity differences
- Uncertainty analysis vital when aiming at small-scale effects

Conclusions

- Effect of individual components:
 - Global hydrology (GHE) has the largest impact (at longer periods)
 - Atmosphere & NTOL important across all frequencies (3x<GHE)
 - Minor influence of tide programs
 - Site dependent
- Combined contribution:
 - No systematic effect on linear trend
 - Significant effect $(>2 \,\mathrm{nm \, s^{-2}})$ on 4-hourly to yearly gravity differences

Uncertainty analysis vital when aiming at small-scale effects

Conclusions

- Effect of individual components:
 - Global hydrology (GHE) has the largest impact (at longer periods)
 - Atmosphere & NTOL important across all frequencies (3x<GHE)</p>
 - Minor influence of tide programs
 - Site dependent
- Combined contribution:
 - No systematic effect on linear trend
 - Significant effect $(>2 \,\mathrm{nm \, s^{-2}})$ on 4-hourly to yearly gravity differences
- Uncertainty analysis vital when aiming at small-scale effects

mikolaj@gfz-potsdam.de

