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SG instruments and installation at J9

Strasbourg, J9
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SG instruments and installation at J9
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Seismic noise levels
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PROCEDURE

• Calibration of raw (or decimated 1-min) data using the scale factor determined
by FG5 parallel measurement or provided by the manufacturer (gPhone, CG5)

• Computation of Power Spectral Densities using a modified Welch-periodogram
technique based on the average of a certain number of 12 h-time windows with
an overlap of 75%

• Statistical distribution of the PSDs and computation of the 1st, 5th, 25th and
50th percentiles but we have selected only the 5th-tile for the plots

NB: No removal of tides and atmospheric pressure effects



Seismic noise levels on 1-sec data
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New Low Noise Model (NLNM) of Peterson (1993)
Statistical Low Noise Model (SLNM) of Castellaro and Mulargia (2012) 
Dashed gray lines: Global Seismographic Network 5th-tile of Berger et al. (2004)



Seismic noise levels on 1-minute data
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PROCEDURE

Using a 3-channel correlation technique (Sleeman et al. 2006)

 We do not need to know the transfer function of the channel

self−noise: 𝑁௜௜ ൌ 𝑃௜௜ െ 𝑃௝௜𝑃௜௞/𝑃௝௞

Cross-PSD between i and kPSD of channel i

Instrumental noise + installation + configuration 
+ very local effects



Self-noise levels
IG

ET
S,

 1
st

w
or

ks
ho

p,
 P

ot
sd

am
, 1

8-
20

 J
un

e 
20

18

Self-Noise LevelsIntroduction ConclusionSeismic Noise Levels



Self-noise levels
IG

ET
S,

 1
st

w
or

ks
ho

p,
 P

ot
sd

am
, 1

8-
20

 J
un

e 
20

18

Self-Noise LevelsIntroduction ConclusionSeismic Noise Levels

iGrav30: installation problem (confirmed by checking the tilt signals) -
instrument pods only partially decoupled from the ground

iGrav31: malfunctioning cold-head

iGrav15: installed directly on the ground
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THERMAL NOISE MODEL

thermal force noise associated with Brownian motion in a simple damped
mechanical oscillator (Saulson, 1990, Warburton et al., 2010)

where ω0 is the natural frequency of the oscillator, Q its quality factor and m is the mass of the
oscillating sphere; kB is the Boltzmann constant and T the temperature.
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K: From magnetic gradient (between upper and lower coils)
K<<1  a small gravity change  a large displacement of the sphere

Damping constant 
proportional to velocity
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THERMAL NOISE MODEL

 Determination of the oscillator parameters K and b by R. Warburton
(personal communication)

Parameters Unit iGrav29 iOSG-23
Mass m g 4.02 17.67
Frequency f0 Hz 0.24 0.10
Q 0.142 0.05
Spring constant K N/m 0.0090 0.0076
Damping factor b kg/s 0.051 0.232
Power Spectral Density dB -181 -188



In the mHz frequency band:
iGrav29, iGrav15: self-noise = thermal noise model
iOSG-23: 5 dB above thermal noise (m = 17.7 g)

Self-noise levels
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20 dB
(factor 10 in 
amplitude)

Self vs. observed noise levels
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At sub-seismic frequencies (T>1h) 
Observed noise level >> self-noise level environmental origin not instrumental 



Self vs. observed noise levels
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After ETERNA tidal analysis lower PSD than subtraction of a local model



Conclusion
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• We have shown an exhaustive noise level comparison of various gravimeters
and a long-period STS-2 seismometer at a same site

• At seismic frequencies (mHz range), for iGrav-29 and iGrav-15, self-noise
level perfectly explained by the thermal noise model of a damped mechanical
oscillator

• Why iOSG-23 self-noise is larger than thermal noise model, is it due to the
installation, configuration (magnetic gradient) or is it an impossibility to
decrease the self-noise below the seismic NLNM?

• At sub-seismic frequencies, self-noise increases with period but much less than
the observed noise level  the noise level increase at long periods is barely
of instrumental origin but mostly environmental

• Self-noise of iGrav29 is at the 0.3 nGal detection threshold at 5 h-period
 Instrumental noise is NOT the main factor that prevents us to detect the inner
core free oscillations (Slichter mode)
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PROCEDURE

Using a 3-channel correlation technique (Sleeman et al. 2006)

self−noise: 𝑁௜௜ ൌ 𝑃௜௜ െ 𝑃௝௜𝑃௜௞/𝑃௝௞

Cross-PSD between i and kPSD of channel i
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DETERMINATION OF OSCILLATOR PARAMETERS K AND b

After Warburton R. (personal communication)

K: From magnetic gradient 
(between upper and lower coils)
K<<1  a small gravity change 
 a large displacement of the sphere

Damping constant 
proportional to velocity

𝑧ሺ𝑡ሻ

𝑧଴
K

b

m

𝐹ሺ𝑡ሻ

The spring constant K is determined by measuring the
displacement of the sphere in response to an applied force. The
force is produced by generating a small current in the feedback
coil and the displacement is measured by the capacitance bridge.
This requires careful calibration of the capacitance bridge
(C4095) and feedback coil (GF) by experimental measurements.

- Using step function
1/K = C4095 x V / (GF x i)

- Using tide model and in open loop (need to know COL)
K = (m x COL)/C4095

The constant b is the slope of the linear dependency
between phase delay and sensitivity (1/K) in Open Loop
for different Gradient Coil currents.


