

SELF-NOISE CORRELATION ANALYSIS OF SUPERCONDUCTING GRAVIMETERS AT THE J9 GRAVIMETRIC OBSERVATORY OF STRASBOURG, FRANCE

Séverine Rosat, Jacques Hinderer, Frédéric Littel

Institut de Physique du Globe de Strasbourg; UMR 7516, Université de Strasbourg/EOST, CNRS

Seismic Noise Levels

Self-Noise Levels

Conclusion

SG instruments and installation at J9

Since July 1996 C026

Since Feb. 2016 iOSG-23

Seismic noise levels

PROCEDURE

- Calibration of raw (or decimated 1-min) data using the scale factor determined by FG5 parallel measurement or provided by the manufacturer (gPhone, CG5)
- Computation of Power Spectral Densities using a modified Welch-periodogram technique based on the average of a certain number of 12 h-time windows with an overlap of 75%
- Statistical distribution of the PSDs and computation of the 1st, 5th, 25th and 50th percentiles but we have selected only the 5th-tile for the plots

NB: No removal of tides and atmospheric pressure effects

Seismic noise levels on 1-sec data

New Low Noise Model (NLNM) of Peterson (1993) Statistical Low Noise Model (SLNM) of Castellaro and Mulargia (2012) Dashed gray lines: Global Seismographic Network 5th-tile of Berger et al. (2004)

Seismic Noise Levels

Self-Noise Levels

Seismic noise levels on 1-minute data

PROCEDURE

Using a 3-channel correlation technique (Sleeman et al. 2006)

 \rightarrow We do not need to know the transfer function of the channel

Self-noise levels

Self-noise levels

<u>iGrav30</u>: installation problem (confirmed by checking the tilt signals) - instrument pods only partially decoupled from the ground

iGrav31: malfunctioning cold-head

iGrav15: installed directly on the ground

THERMAL NOISE MODEL

thermal force noise associated with Brownian motion in a simple damped mechanical oscillator (Saulson, 1990, Warburton et al., 2010)

$$\frac{d^2z}{dt^2} + \frac{b}{m}\frac{dz}{dt} + \boldsymbol{\omega}_0^2 z(t) = \mathbf{F}(t)$$

z: relative displacement of the sphere wrt its equilibrium position

$$\omega_0 = \sqrt{\frac{K}{m}}, \quad Q = \frac{\sqrt{Km}}{b}$$

$$P_{thermal} = 4k_B T \frac{B}{m^2}$$

$$P_{thermal} = 4k_B T \frac{\omega_0}{mQ}$$

K: From magnetic gradient (between upper and lower coils) K<<1 \rightarrow a small gravity change \rightarrow a large displacement of the sphere

where ω_0 is the natural frequency of the oscillator, Q its quality factor and m is the mass of the oscillating sphere; k_B is the Boltzmann constant and T the temperature.

or

THERMAL NOISE MODEL

> Determination of the oscillator parameters K and b by R. Warburton (*personal communication*)

Parameters	Unit	iGrav29	iOSG-23
Mass m	g	4.02	17.67
Frequency f ₀	Hz	0.24	0.10
Q		0.142	0.05
Spring constant K	N/m	0.0090	0.0076
Damping factor b	kg/s	0.051	0.232
Power Spectral Density	dB	-181	-188

In the mHz frequency band: <u>iGrav29</u>, <u>iGrav15</u>: self-noise = thermal noise model <u>iOSG-23</u>: 5 dB above thermal noise (m = 17.7 g)

<u>At sub-seismic frequencies (T>1h)</u> Observed noise level >> self-noise level \rightarrow environmental origin not instrumental

18-20 June 2018 Potsdam 1st workshop, GETS

Conclusion

- We have shown an exhaustive noise level comparison of various gravimeters and a long-period STS-2 seismometer at a same site
- At seismic frequencies (mHz range), for iGrav-29 and iGrav-15, self-noise level perfectly explained by the thermal noise model of a damped mechanical oscillator
- Why iOSG-23 self-noise is larger than thermal noise model, is it due to the installation, configuration (magnetic gradient) or is it an impossibility to decrease the self-noise below the seismic NLNM?
- At sub-seismic frequencies, self-noise increases with period but much less than the observed noise level → the noise level increase at long periods is barely of instrumental origin but mostly environmental
- Self-noise of iGrav29 is at the 0.3 nGal detection threshold at 5 h-period
- \rightarrow Instrumental noise is NOT the main factor that prevents us to detect the inner core free oscillations (Slichter mode)

Acknowledgments

- We are grateful to Richard Reineman for the installation of the iGrav and iOSG-23 and to Richard Warburton for the determination of the values of the parameters entering the damped oscillator model
- We thank GWR for the lend of the iGrav-15
- We thank IGN Madrid and Marta Calvo for the lend of the gPhone-54

Thank YOU for your attention!

DETERMINATION OF OSCILLATOR PARAMETERS K AND b

After Warburton R. (personal communication)

The spring constant K is determined by measuring the displacement of the sphere in response to an applied force. The force is produced by generating a small current in the feedback coil and the displacement is measured by the capacitance bridge. This requires careful calibration of the capacitance bridge (C_{4095}) and feedback coil (G_F) by experimental measurements.

• Using step function

$$1/K = C_{4095} \ge \Delta V / (G_F \ge \Delta i)$$

- Using tide model and in open loop (need to know C_{OL}) $K = (m \ge C_{OL})/C_{4095}$

The constant b is the slope of the linear dependency between phase delay and sensitivity (1/K) in Open Loop for different Gradient Coil currents.

Damping constant

K: From magnetic gradient (between upper and lower coils) K<<1 \rightarrow a small gravity change \rightarrow a large displacement of the sphere