Intercomparison of a dense meter-scale network of superconducting gravimeters at the J9 gravimetric observatory of Strasbourg, France

J. Hinderer^{1,} S. Rosat¹, Schäfer², F., Riccardi³, U., Boy¹, J.-P., Jousset², P., F. Littel¹, J.-D., Bernard¹

¹ Institut de Physique du Globe de Strasbourg, Université de Strasbourg/EOST, CNRS, France

² Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany

³ Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR), Università Federico II di Napoli, Naples, Italy

Outline

- Introduction (site, data sets)
- Calibration (absolute and relative)
- Time delay (time cross-correlation, tidal analysis, step experiments)
- Initial drift after installation
- Noise levels
- Conclusion

Strasbourg Gravimetric Observatory (J9)

iOSG23

iGrav30

C026

Time table of SG observations at J9

A maximum of **7 different SGs** in operation in STJ9 but only:

6 simultaneous SGs in July 2017: iGrav15, iGrav32, iGrav29, iGrav30, iGrav31, iOSG23, C026

6 simultaneous SGs in October 2017: iGrav6, iGrav15, iGrav32, iGrav29, iGrav30, iOSG23, C026

Transfer function between two SG time series

Calibration

Absolute calibration: use of AG gravity values in parallel with SG voltages

Imanishi et al. 2002

Determination of scale factor in nm s⁻²/volt

Absolute calibration

Two AG/SG calibration experiments:

- September 2016: 149 hours = 6.2 days iGrav29, iGrav30, iGrav31, iOSG23
- July 2017: 170 hours = 7.1 days iGrav15, iGrav32
- No absolute calibration for iGrav6
- Numerous calibrations for C026 since 1996

SG name	Duration of calibration experiment	AG Cal and error (nm s ⁻² /V)	Dimensionless Error on AG Cal
C026		-792 ± 1	0.1 %
iOSG023	6.2 days	-451 ± 2	0.4 %
iGrav006	Х	Х	X
iGrav015	7.1 days	-934 ± 3	0.3 %
iGrav029	6.2 days	-940 ± 4	0.4 %
iGrav030	6.2 days	-918 ± 4	0.4 %
iGrav031	6.2 days	-853 ± 4	0.5 %
iGrav032	7.1 days	-898 ± 3	0.3 %

Time changes in AG CAL for C026 (1997-2012)

IGETS database Cal= $-792.0 \pm 1.0 \text{ nm s}^{-2}/\text{V}$ (0.1%)

2012 conflated drop mean Cal = -791.93 ± 0.19

2012 conflated set mean Cal = -790.53 ± 0.11

Crossley et al. 2018 PAGEOPH

Relative calibration

Time regression of gravimeter voltages to a reference gravity signal (previously calibrated at the same site)

An example of multilinear regression

(iGrav30 /iOSG23 in May 2017)

RED: linear drift

GREEN: residual signal (Sigma = 0.7 nm s⁻²)

File		
iGrav30 -9.1764e+002 err	5.7951e-003	-
Poly(t) 0 1.6061e+003 err	9.4059e-003	
Poly(t) 1 -6.6255e-005 err	2.5971e-007	
Residual standard deviation: +1.000000 -0.893205 -0.893205 +1.000000	0.7067241	
# of degrees of freedom obj ch#8: # of degrees of freedom comp. ch#2 Correlation: -0.9999991	203 : 203	
coeff: -10627.766		
Chudantia t mahahilituu Maianifia	. 100 000	

relative calibration value
+ error (in nm s⁻²/volt)

Correlation coefficient

Relative calibration versus absolute calibration

- errors in Rel Cal much smaller than errors in AG Cal in the range 3. 10⁻⁶ – 5. 10⁻⁵ according to the length of the comparison
- largest errors for shortest series in the regression analysis
- all correlation factors very high (at least > 0.999)

	Duration	Rel Cal and error	dimensionless	AG Cal and error	Difference in
		(nm s ⁻² /V)	error on Rel Cal	(nm s ⁻² /V)	Rel Cal–AG Cal
SG name					(nm s ⁻² /V)
ou nume					
	31 days	-792.0 ± 0.02	3. 10 ⁻⁵	-792 ± 1	0
C026	10/17				
REFERENCE	31 days	-451	x	-451 ± 2	0
iOSG023	10/17				
	22 days	-913.9 ± 0.05	5. 10 ⁻⁵	х	х
iGrav006	01-22/10 /17				
	22 days	-930.3 ± 0.008	9. 10 ⁻⁶	-934 ± 3	3.7
iGrav015	01-22/10 /17				
	31 days	-937.8 ± 0.003	3. 10 ⁻⁶	-940 ± 4	2.2
iGrav029	10/17				
	31 days	-917.6 ± 0.006	7 . 10 ⁻⁶	-918 ± 4	0.4
iGrav030	05/17				
	31 days	-850.5 ± 0.003	4. 10 ⁻⁶	-853 ± 4	2.5
iGrav031	05/17				
	10 days	-894.3 ± 0.07	8. 10 ⁻⁵	-898 ± 3	3.7
iGrav032	13-22/10 /17				

differences between AG Cal and Rel Cal in the range 0.4-3.7 nm s⁻²/Volt (with calibration factors close to 900 nm s⁻²/Volt)

Time variability of the Rel Cal

Amplitude of tidal residuals according to calibration factor

iGrav29 -iOSG23 one month of min samples in October 2017

IG29 (-937.4) - IOSG23 GREEN

IG29 (-937.8) - IOSG23 RED from regression with iOSG23

IG29 (-938.2) – IOSG23 BLUE

IG29 (-938.6) - IOSG23 BROWN

Incremental steps of 0.4 nm s⁻²/volt

≈ 0.04 %

(compared to 4 nm s⁻²/volt uncertainty from AG/SG)

Rel Cal (-937.8) leads to the minimum in tidal residuals (in **RED**)

AG Cal (-940 nm s-2/V)) would lead to large tidal residuals...

Results from tidal analysis (ET34-ANA-V61A from K. Schüller)

longest common period (LCP) of iGrav 29,30,31 and iOSG23 04/08/2016 - 19/06/2017; 321 days (nearly 1 year) assuming null phase lag and using the AG Cal for each gravimeter

Time delay

Time cross-correlation analysis

Uses two by two common time series with identical sampling e.g. 1 month of 1 min samples (May 2017)

C026 TIDE/iGrav29

C026 GGP1/iGrav29

Reference instrument: iGrav29

- Time delay of iGrav30/iGrav29 = -1 ± 1 sec cor. = 0.9999933
- Time delay of iGrav31/iGrav29 = -1 ± 1 sec cor. = 0.9999994
- Time delay of iOSG23/iGrav29 = -3 ± 1 sec cor. = 0.9999980
- Time delay of C026 (GGP1)/iGrav29 = -8 ± 1 sec cor. = 0.9995466
- Time delay of C026 (TIDE)/iGrav29 = +23 ± 1 sec cor. = 0.9996181

Time cross-correlation: May 2017 31 days

Tidal analysis:**303 days** for iGrav29, **321 days** for iGrav30,**300 days** for iGrav31, **334 days** for iOSG23

Time cross-correlation: October 2017 31 days

Step experiments for C026 GGP1 in 2012 and C026 TIDE in 1999

Tidal analysis: 2017.06.01 - 2018.04.30 **334.0 days**

and for iOSG23 in 2018

Instrumental drift

iGrav29, 30, 31:

- installed in July 2016
- relevitated in October 2016

iOSG23 installed in february 2016

$$y = y_0 + A_1^* exp(-(x-x_0)/T_1)$$

	iGrav29	iGrav30	iGrav31
A1 (in nm s ⁻²)	-73.9	-77.7	-49.1
T1 (in days)	5.6	5.7	0.2

Comparison of the noise levels of all SGs in Strasbourg

Summary

- Relative calibration when different SGs are present on the same site can be more accurate than absolute calibration from AG/SG parallel records
- Time delays can be retrieved from crosscorrelation between different SG time series, from tidal analysis or from step experiments
- Initial drift of iGravs is exponential with time constants less than 10 days

To be done

• Stability of calibration factor, time delay and drift when moving a SG from one site to another

Thank you for your attention!

Special thanks for R. Reineman (GWR Instruments) for installing the SGs in J9 and to R. Warburton (GWR Instruments) for numerous discussions on SG properties