1st Workshop on the International Geodynamics and Earth Tide Service (IGETS)

June 18.-20. 2018, Potsdam, Germany

IGETS Data Products (Part II)

Topics:

- 1. Evaluation of preprocessed data provided by IGETS
- 2. IGETS data and seismological services,
- 3. Recent progress in tidal analysis by Klaus Schüller,

1. Data

- Level 1: Raw data provided by station operator
 - standard: 1 min (repair code 00)
 - extra: \rightarrow 1 sec data
- Level 2: based on Level 1
 - ICET/UFP
 - User supplied corrected files: uncalibrated?
- → IAG-services: comparison/combination of solutions of different AC's
- Level 3: based on Level 2
 - Tidal model
 - Atmosphere, hydrology, polar motion Individual corrections provided to the user!

IGETS REPAIR CODES

Code	Level	significance	
00	1	raw data (as recorded), decimated to 1 min	no repair prior to decimation (GGP STANDARD). short gaps or spikes shorter than about 10 sec can be filled by linear interpolation between good data points on the raw data (full signal), prior to decimation.
00	1	raw data as recorded at 1 sec, 2 sec	no repair, file extension "ggs",
01	1	gaps and disturbances filled with synthetic signal	repair done on raw data, before decimation to 1 min, suggested maximum gap length 2 days
02	1	as 01 + offsets adjusted	repair done on raw data, before decimation to 1 min
11	2	gaps and disturbances filled with synthetic signal	repair done by station operator on data after decimation to 1 min
12	2	as 11 + offsets adjusted	repair done by station operator on data after decimation to 1 min
21	2	gaps and disturbances filled with synthetic signal	repair done by staff at ICET *, on data after decimation to 1 min, prior to tidal analysis
22	2	as 21 + offsets adjusted	repair done by staff at ICET *, on data after decimation to 1 min, prior to tidal analysis
h1	2	data processed by user	one hour data decimated from 1 min
h2	2	data processed by ICET*	as above, but done by staff at ICET*

Evaluation of L2-data: Station OS-054

2010-08-25 -230,1 Evaluation of L2-data: Station WE-030 2011-07-05 -239,2 t Show Calculate Filters Correctors Sismology Tides Script Help 5-06-2010 12h00m00s **Difference Gravity Signal** .000s x 3076560 pts h: 2136,50000 days 2010 06h46m00.000s 737 hPa R 276886 File Show Artificial noise in air pressure? -300 -Uraw [Volt] -0.0020 Uraw UPF -[nm/s*2] 600 · BKG **#**aw Difference Gravity Signal, major steps correctec Diff Uraw UPF - BKG #corr 40 air pressure UPF - BK0 -0.0015 Uraw [Volt] air pressure [hPa] All and a state of the second 400. -0.0010 Difference Air Pressure 200. -0.0005 0 --0.0000 01-01-11 01-01-12 01-01-13 01-01-16 01-01-14 01-01-15 6/21/2018

IGETS wo

2-1

2-2

Steps applied [nm/s²]

IGETS Data Products (Part II)

Topics:

1. Data

- Evaluation of preprocessed data provided by IGETS
- Documentation of step corrections: Gravity correction function
- Calibration files, Provision and use with L2-data

→ Units of gravity signal in processed Data: Volts (significant digits!), mV, scaled with one calibration factor

How to deal with scale factor changes in L2/L3 data?

- Real-time data analysis
- Drift documentation: applied not applied?

IGETS data and seismological services

- IRIS (Incorporated Research Institutions for Seismology), FDSN (International Federation of Digital Seismograph Networks)
- Only three stations:

MEMB (high rate), ST, YS (not active)

BFO data not scattered across too many network codes: data provided to IRIS/FDSN through network II together with all other BFO channels: http://ds.iris.edu/mda/II/BFO/00/LG1 http://ds.iris.edu/mda/II/BFO

- Centralized Conversion to MiniSEED at ISDC?
- Transfer function: How to derive poles/zeros? Nominal values of analogue filter?
- Simple way to provide 1s-Daten?

2	EDSN: SG: International Geodynamics	s and Earth Tide Ser	vice - Mozil	la Eirefox									
Ø. CO Me Ø. EG	1020 🙉 EGU – 🐻 Links to /	TOON FDS. X TOON	FDSN:	🚺 Seismi	c 105	IRIS: D		+ +				ullun	-
			-			_7		_		-		and built	
Www.tasn.org/ne	etworks/detail/SG/		V •	11 - 1	<i>#</i>	× 🖵	P 22	-					
FDSN Home / Networks / 50	International Fed	leration of Di	igital So	eismogr	aph-J	Vetvo	Sig	n in		-			0
G: Internatio	nal Goodynamics an	d Earth Ti	da Sa	nvico				1					
DSN Network I	nformation	Are	you the ope	erator of this	network	? Update t	his informa	tion.					
FDSN code	SG		Operated	l by		Multiple C	perators						
Network name	International Geodynamics and Earth T	ide Service (IGETS)	Deploym	ent region		Global	-						
Start date	Jan. 1, 1997		End date	-		-							
Network Website	http://igets.u-strasbg.fr/												
Short description	Gravity changes with periods ranging 10 corresponding to a precision of 0.2 nm IGETS continues the Clobal Geodynami) seconds to pluriann /s² (or 0.02 μGal) at a cs Project (GGP) whic	ual, with a p period of 10 h became a	recision bett 10 s. service of IA	er than 10 G in June	0 (nm/s²)² 2015.	/Hz,						
				IRIS DM	C MetaE)ata Agg	regator: /s	G/MEME	- Mozilla	Firefox			
Citation Informa	ntion	< 🕐 CO M	e Ø	EGU20	🞯 EG	su – <i>j</i>	RIS .	× 🕼	s GOAT	rosv FD	SN:	🚺 Seisi	n> +
Digital Object Identifier (DOI)	doi:10.7914/SN/SG	(i ds.iris	.edu/mda/S	G/MEMB			C Q	Suchen		☆ 🖻		• 🏠	»
Citation	Network of Superconducting G Tide Service. International Other/Seismic Network. doi:1			I	RIS [/letaDa	ata Ag	ggrega	ator			
		Station s	umma	ary (1	time	spar	ר)				L	_egend:	R A R
Data Access				SG ·· Sun	ercond	ucting G	ravimete	r Global	Geodyn	amics Proi	iort ·· S(3 Networ	-Lz
Data Availability	Data available from IRISDMC (IRIS Data	Networ	k	Map	creona	ucung O	aviinete		Ocodyn	unicarioj		21100000	<u> </u>
	more information including data access	Station		<u>MEMB</u> :: N XML	/lemba	ch, Belg	ium :: SG	∋∷ <u>MEN</u>	<u>IB Statio</u>	<u>n Map</u> :: <u>R</u>	<u>ESP</u> :: <u>S</u>	<u>SAC PZs</u>	11
		Latitud	e	50.60920	0								
		Longitu	ıde	6.006700									
		Elevatio	on	250	E (0.40	00.00	20						
		Staft		2005/02/1	0 (046	1 00:000	50						
		End		2099/12/3	7 (030)	08.24	00 - 250	0/12/31	(365) 23	-59-59			
		Instrum	ent	Quanterra	33011	near Ph	ase Com	nosite	v/baler S	OH c			
		Channe	els (Hz)	_ocation -	-: ACF	(0)	000 0011	iposito v	a building	0.10			
		Instrum	ient	Paroscien	tific Mi	crobaro	graph						
		Channe	els (Hz)	_ocation -	-: LDI (1) R							
		Epoch		2005/02/1	5 (046) 00:00:	00 - 259	9/12/31	(365) 23	:59:59			
		Instrum	ient	Quanterra	330 Li	near Ph	ase Com	nposite					
		Channe	els (Hz)	_ocation _	-: <u>VCO</u>	(0.1)							
		Instrum	ient	Quanterra	330 Li	near Ph	ase Corr	nposite v	v/baler S	OH c			
		-		ocation -	- LCE	(1) R		1 OG (() OCF (VEA (0 	1) R V	FC (0 1)	R

Channels (Hz) Location --: BDI (100) R. VDI (10) R

des sciences de la Terre

Université de Strasbourg

Experience of sending SG 1-sec data to DMC-IRIS at Strasbourg, France

S. Rosat, J.-P. Boy, J. Hinderer and D. Crossley

Steps to send 1-sec daily SG data to DMC-IRIS from GWR DDAS

<u>STEP 1</u>

- <u>Prepare the response files for the gravimeter and the barometer:</u>
- \rightarrow Need to know the transfer function of the instrument
- \rightarrow Compute poles and zeros
- → Sensitivity = 1/ (scale factor in m/s²/V for the gravimeter or in hPa/V for the barometer)
- <u>Contact Rick Benson (rick@iris.washington.edu) or Mea Edmunds</u> (<u>edmunds@iris.washington.edu</u>) at IRIS to create the station directory (if it does not exist yet) or the channel SG for an existing station: you will then need to send her/him the station coordinates, the response files and the IP address of the server from which the data will be sent to DMC-IRIS.
- On your local server, create a directory containing the data in MINISEED format (see Step 2) and install the **miniseed2dmc** package. **Prior to using this program coordination with DMC is required** and the user must have been assigned a host and port indicating where the data should be sent.

Example: nominal GGP1 RESP file for Strasbourg C026

A nominal response file for iGrav and iOSG:

- Butterworth analog filter \rightarrow poles and zeros
- FIR filter consisting of 69 terms (Analog to Digital Converter triggered at 8 Hz) (for iGrav and iOSG manufactured after January 2015) or FIR filter consisting of 85 terms (Analog to Digital Converter triggered at 10 Hz) (for iGrav manufactured before January 2015) → zeros only (filter coefficients provided by GWR)

STEP 2: preparation of MINISEED files on a Linux computer

Scripts and packages available at: http://igets.u-strasbg.fr/Documents/ggp2iris.zip

Alternative treatment of SG 1 sec data

SENDING MONTHLY FILES TO IGETS

1. Many users have sent earthquake data to GGP following major earthquakes. These files have been used extensively by scientists studying the normal modes or free oscillations. The reason non-seismologists have used them is their availability as simple ASCII files, and they were posted on the GGP website for immediate download.

2. It is trivial for data providers to prepare 1 sec files by month and send them on a regular basis to IGETS at the same time as the 1 min files are sent. Example files are available for example in directory /Apache-Point/ap046/Level1/2009 in files like IGETS-SG-SEC-ap046-20090400.zip.

3. All that is required at IGETS is to apply a similar script file as *ggp2mseed.c* to prepare the MINISEED version, and then send to IRIS using *miniseed2dmc.c*.

4. Although this requires 2 extra processing steps at IGETS, surely it can be done quite easily.

5. The advantage to data providers is obvious. The only downside is the 1 month delay in getting the data directly to IRIS for immediate processing, but fewer people are doing this for every large earthquake anyway.

Recent progress in tidal analysis by Klaus Schüller: ETERNA ET34-ANA-Vnm

- No update of Eterna 3.4 package since 1997, DOS binaries not executable on Windows 7+
- Initiative by K. Schüller (HYCON) in 2014 welcome: Updated version with new features based on source code of version 3.4

New Features (selected):

- Hypothesis free modelling of the higher degree of the tidal force development (TGP V3-V6)
- Integrating the DDW-H and DDW-NHi Earth models in addition to WDZ up to degree 6
- Fully integrating degree 1 tidal potential.

****	*****
**************************************	*****
*****	*****
*****	*****
**************************************	*****
******	****
****	****
*****	*****
****	*****
*****	****
****	****
*	****

fully based on least squares and statistical theory

 Binaries 32- and 64-bit MS-Windows compatible with Vista, 7, 8, 10, based on FTN95 from Silverfrost

Updated Version of ETERNA ET34-ANA-V70

- ET34-X-V70 now is applicable for all tidal components without any restrictions
- ET34-X-V70 now comprises all degrees 1 to 6 of the tidal potential development (TGP)
- ET34-X-V70 supports the following Earth models for all components

Dehant-Defraigne-Wahr-H (DDW-H) Dehant-Defraigne-Wahr-Nhi (DDW-Nhi) Wahr-Dehant-Zschau (WDZ)

• ET34-X-V70 now provides a model for "Free Core Nutation (FCN)" for all components including strain

Important Reference:

"Canonical Wave Grouping as the Key to Optimal Tidal Analysis" by Ducarme, B. and Schueller, K., to be published in BIM 150 soon

represents an important source of information for this release. Many of the ideas and derivations of this paper have been implemented in ET34-X-V70.

Changes in ETERNA ET34-ANA-V70: TGP structure

Providing a high-resolution structure for the constituents of the TGP

- by associating new symbol names to constituents derived from the Moon's ascending node and perigee as well as annual modulations.
- Implementation of this structure into the TGPs of Hartmann, Wenzel 1995, Kudryavtsev 2003 and Tamura 1987
- General structure of a V_2- wave group xxxx of the Tide Generating Potential (TG):

-	low frequer	ncy a	nnu	ial mo	dulation	xxxxa => $\omega - h$	+ p _s	
		0	lov	v freq	luency Moon	's perigee	V3:xxx	x- => $\omega - p$
- low frequency annual modulationxxxxa => $\omega - h + p_s$ \circ low frequency Moon's perigee $V3:xxxx- => \omega - p$ •low double nodal frequency $xxxx- => \omega - 2N'$ •low nodal frequency $xxxx- => \omega - N'$ \circ tidal main constituent $xxxx => \omega$ •high nodal frequency $xxxx+ => \omega + N'$ •high double nodal frequency $xxxx+ => \omega + 2N'$ \circ high frequency Moon's perigee $V3:xxxx+ => \omega + p$						$-2N^{'}$		
					• low	nodal frequency	XXXX-	$\Rightarrow \omega - N'$
					(tidal main cor	nstituent	xxxx => ω
					• high	nodal frequency	xxxx+	$\Rightarrow \omega + N'$
					high double	nodal frequency	xxxx++ => ω	p + 2N'
		0	hig	gh free	quency Mooi	n's perigee	V3:xxx	$x + => \omega + p$
-	high freque	ncya	ann	ual m	odulation	xxxxb => $\omega + h$	- p _s	

- s mean tropical longitude of the Moon,
- h mean tropical longitude of the Sun,
- p mean tropical longitude of the lunar perigee,
- N' = -N negative mean tropical longitude of the lunar ascending node and
- p_s mean tropical longitude of the solar perigee.

Rayleigh-Periods in tropical years for resolving the general wave group structure:

The table values are generated by calculating for each row the difference in angular velocity of the parameters ω , N', 2N', p of column "Main tide xxxx" and the column parameters \pm N', \pm 2N', \pm p, \pm (h-p_s) and then replacing the results by the associated periods in tropical years.

-(h- _{ps})	-р	-2N′	-N′	Main	N'	2N'	р	h-p _s
хххха	V3:xxx-	XXXX	хххх-	tide	xxxx+	Xxxx++	V3:xxxx+	xxxxb
				хххх				
				frequ.				
1.00005*	8.85	9.31	18.61	ω	18.61	9.31	8.85	1.00005*
0.949	6.00	6.20	9.31	N'		9.31	16.86	1.06
0.903	4.54	4.65	6.20	2N'			179.34	1.12
0.898	4.42	4.54	6.00	р				1.13

• Reference potential functions and associated wave groups

- Definition of reference potential functions
 - V20, V21, V22, V33, V44, V55, V66
 - uniquely cover the tidal frequency domain
 - each representing only 1 unique tidal frequency band.

• Reference wave groups

• Wave groups belonging to reference potential functions

V _{nm}	long periodic	1/1- diurnal	1/2- diurnal	1/3- diurnal	1/4- diurnal	1/5- diurnal	1/6- diurnal
Degr.n/or d.m	0	1	2	3	4	5	6
1	<i>V</i> ₁₀	V_{11}					
2	V ₂₀	<mark>V</mark> 21	V ₂₂				
3	<i>V</i> ₃₀	V ₃₁	<i>V</i> ₃₂	V ₃₃			
4	V_{40}	V_{41}	<i>V</i> ₄₂	V ₄₃	V ₄₄		
5	V_{50}	V_{51}	<i>V</i> ₅₂	V ₅₃	V ₅₄	V ₅₅	
6	<i>V</i> ₆₀	<i>V</i> ₆₁	<i>V</i> ₆₂	<i>V</i> ₆₃	V_{64}	V ₆₅	V ₆₆

Non-reference or satellite wave groups

- Definition of non-reference or satellite wave groups
 - representing different potential degrees but the same orders as the reference potential functions
 - sharing the same tidal frequency bands
 - V31 in V21,
 - V32 in V22
 -etc

Implementation reference and satellite wave group

- Option $O_i = 0$: Reference wave group modelling

standard modelling of reference wave group $xxxx_k$ by means of an Earth model like DDW-NHi, DDW-NH, WDZ-Hi, where the constituents of V_{im_k} in $xxxx_k$ are normalized with their amplitude factors according to eq.(6a

- Options $O_i > 0$: Non-reference wave group modelling:
 - **Option** $O_i = 3$: for each reference wave group $xxxx_k$, extended over $\Delta \omega_k$ and belonging to degree n_k , modelling all constituents of degree $i \neq n_k$ in so-called <u>"satellite"</u> wave groups" $Vi: xxxx_k$;
 - **Option** $O_i = 2$: for each reference wave group $xxxx_k$, extended over $\Delta \omega_k$ and belonging to degree n_k and order m_k , modelling all constituents of degree i,

IGETS workshop 2018

General form of a degree based wave group definition

Name/ symbol	lower freq. bound	upper freq. bound	degree	order	option code
xxxx _i	f _{l,i}	f _{u,i}	n _i	m _i	$0_{1i}0_{3i}0_{4i}0_{5i}0_{6i}$
	cpd	cpd			
01	0.929390	0.929960	2	1	23221
	Generated	wave groups			Description
V11	0.58	1.48	1	1	add all V1 tides in O1-range to V11
V3:01	.929390	.929960	3	1	Satellite wave group
V41	0.58	1.48	4	1	add all V4 tides in O1-range to V41
V51	0.58	1.48	5	1	add all V5 tides in O1-range to V51
V6	0.58	1.48	6		add all V6 tides in O1-range toV6

Changes in ETERNA ET34-ANA-V70: Potential functions under correlation aspects

Highly correlated subsets:

- Subset I of even potential degrees : $\{V_2, V_4, V_6\}$ with principle degree V_2
- Subset II of odd " : $\{V_1, V_3, V_5\}$ with principle degree V_3

Conclusion for analysis:

- First analyze potential functions with minimum correlation -> TIER1 priority
- If possible add remaining potential functions
 -> TIER2 priority

V _{nm}	long periodic	1/1- diurnal	1/2- diurnal	1/3- diurnal	1/4- diurnal	1/5- diurnal	1/6- diurnal
Degr.n/ord .m	0	1	2	3	4	5	6
1	<i>V</i> ₁₀	<i>V</i> ₁₁					
2	<mark>/</mark> 20	<mark>V</mark> 21	<mark>V</mark> 22				
3	<mark>V</mark> 30	<mark>V</mark> 31	<mark>V</mark> 32	<mark>V</mark> 33			
4	<mark>//40</mark>	V₄₁	<mark>V</mark> 42	V₄₃	<mark>V</mark> 44		
5	V <mark>50</mark>	V ₅₁	V <mark>52</mark>	V <mark>53</mark>	V ₅₄	<mark>V</mark> 55	
6	V ₆₀	<mark>/</mark> 61	V ₆₂	V ₆₃	V ₆₄	V ₆₅	<mark>V</mark> 66

RNA – Earth Tide Ana	alysis and 🗙	🔓 Advanced Calit	oration Method 🗙	+					
(h	ttp://gg	g <mark>p.bkg</mark> .	bund.d	e/eterna	<u>a/</u>	\$ 9	۵ 🛡	<i></i>
****** ** ** ** ** ** ** ** **	******* ** ** ** ** ** ** ** **	****** ** ** ** ** ** ** ** **	******* ** ** ** ** ****** ** ** ** ** ** **	** ** *** ** **** ** ** ** ** ** *** ** *** ** ***	**** ** ** ** ** ** ** ** ** ** ** **	C B	X° Alla		
The enh	MS ABOU	Earth Ti	de Analy	vsis and P	Predic-	Search			
Introductory rer	marks by					Search			
Klaus Schueller,	Research Initia	ative for Tidal A	nalysis (RITA)			News			
The objective of and technical we zel who passed a	f this initiative i ork of my colle away a long tim	is to acknowled ague and friend ne ago.	ge and preserve I Prof. DrIng. hal	the extraordinary bil. Hans-Georg (S	rintellectual Schorsch) Wen-	Maintenance upo able!	date for ET-	ANA-V52 a	avail-
Therefore, the in	ntention is to r	naintain and en ll meet the nov	hance a comprei vadays requireme	hensive and susta	inable platform Serksbon 2018	Coming soon: Ve	ersion ET34-	ANA-V60	(a)l

all over the world

Download of Version ET34-ANA-V52 avail-